Lectures 5: null hypothesis tests |.



Null hypothesis testing is reductio ad absurdum argument:

e Null hypothesis testing is a reductio ad absurdum argument adapted to statistics: a
hypothesis is shown to be valid by demonstrating the improbability of the consequence that

results from assuming the counter-claim to be true (fair coin, normal distribution).

® The only hypothesis that needs to be specified in this test and which embodies the counter-
claim is referred to as the null hypothesis.

® Aresultis said to be statistically significant if it allows us to reject the null hypothesis. That is,
as per the reductio ad absurdum reasoning, the statistically significant result should be highly
improbable if the null hypothesis is assumed to be true.

® The rejection of the null hypothesis implies that the correct hypothesis lies in the logical
complement of the null hypothesis. However, unless there is a single alternative to the null
hypothesis, the rejection of null hypothesis does not tell us which of the alternatives might be
the correct one.
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Null hypothesis testing:

- A statistical hypothesis refers to a probability distribution that is assumed to govern
the observed data. If X is a random variable representing the observed data and H is
the statistical hypothesis under consideration, then the notion of statistical
significance can be quantified by the conditional probability P( X | H'), which gives
the likelihood of the observation if the hypothesis is assumed to be correct.

- The p-values should not be confused with probability on hypothesis (as is done in
Bayesian Hypothesis Testing) such as P( H I X) , the probability of the hypothesis
given the data, or P( H ), the probability of the hypothesis being true, or P( X)), the
probability of observing the given data.


https://en.wikipedia.org/wiki/Conditional_probability

Null hypothesis testing:

The p-value is defined as the probability, under the assumption of hypothesis H, of
obtaining a result equal to or more extreme than what was actually observed.
Depending on how it is looked at, the "more extreme than what was actually observed"
can mean

{ X = x } (right-tail event) or

{ X = x } (left-tail event) or the "smaller" of

{X=x}and{ X =x} (double-tailed event).

Thus, the p-value is given by
- P(X=x1H) for right tail event,
« P( X =x1H) for left tail event,
« 2min{P(X=xI1H),P(X=xI|H) }for double tail event.

The smaller the p-value, the larger the significance because it tells the investigator that
the hypothesis under consideration may not adequately explain the observation. The
hypothesis H is rejected if any of these probabilities is less than or equal to a small,
fixed but arbitrarily pre-defined threshold value a, which is referred to as the level of
significance.

Unlike the p-value, the a level is not derived from any observational data and does not
depend on the underlying hypothesis; the value of a is instead determined by the
consensus of the research community that the investigator is working in.



Null hypothesis testing:

Important:

Pr (observation | hypothesis) # Pr (hypothesis | observation)
The probability of observing a result given that some hypothesis
is true is not equivalent to the probability that a hypothesis is true

given that some result has been observed.

Using the p-value as a “score” is committing an egregious logical error:
the transposed conditional fallacy.

Computing a p-value requires a null hypothesis,
a test statistic (together with deciding whether More likely observation
the researcher is performing a one-tailed test or *

a two-tailed test), and data. Even though 1
computing the test statistic on given data may
be easy, computing the sampling distribution
under the null hypothesis, and then computing

P-value

>

Probability density

its cumulative distribution function (CDF) is often \éirgelr‘:;[ii';ig \éirgel:\,";ii‘;iz
a difficult computation. Today, this computation is + +

done using statistical software and computational
power.
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A p-value (shaded green area) is the probability of an observed
(or more extreme) result assuming that the null hypothesis is true.



simplified coin flipping test null hypothesis testing:

As an example of a statistical test, an experiment is performed to determine whether a coin flip is fair (equal chance
of landing heads or tails) or unfairly biased (one outcome being more likely than the other).

Suppose that the experimental results show the coin turning up heads 14 times out of 20 total flips. The null
hypothesis is that the coin is fair, and the test statistic is the number of heads. If a right-tailed test is considered, the
p-value of this result is the chance of a fair coin landing on heads at least 14 times out of 20 flips. That probability

can be computed from binomial coefficients as
Prob(14 heads) + Prob(15 heads) + - - - + Prob(20 heads)

1 [/20 20 20 60,460
~ o0 [(14) T (15) et (20)] = Toas 576 08
This probability is the p-value, considering only extreme results that favor heads. This is called a one-tailed test.
However, the deviation can be in either direction, favoring either heads or tails. The two-tailed p-value, which
considers deviations favoring either heads or tails, may instead be calculated. As the binomial distribution is

symmetrical for a fair coin, the two-sided p-value is simply twice the above calculated single-sided p-value: the two-
sided p-value is 0.116. In the above example:

null hypothesis (Ho) p(head) = 0.5

- Test statistic: number of heads
Level of significance: 0.05
Observation O: 14 heads out of 20 flips; and

- Two-tailed p-value of observation O given Ho = 2*min(Prob(no. of heads = 14 heads), Prob(no. of heads
< 14 heads))= 2*min(0.058, 0.978) = 2*0.058 = 0.116.

Note that the Prob(no. of heads < 14 heads) = 1 - Prob(no. of heads = 14 heads) + Prob(no. of head = 14) =1 -
0.058 + 0.036 = 0.978; however, symmetry of the binomial distribution makes that an unnecessary computation to
find the smaller of the two probabilities. Here, the calculated p-value exceeds 0.05, so the observation is consistent
with the null hypothesis, as it falls within the range of what would happen 95% of the time were the coin is in fact fair.
Hence, the null hypothesis at the 5% level is not rejected. Although the coin did not fall evenly, the deviation from
expected outcome is small enough to be consistent with chance.

However, had one more head been obtained, the resulting p-value (two-tailed) would have been 0.0414 (4.14%).
The null hypothesis is rejected when a 5% cut-off is used.



Null hypothesis testing summary:

“null hypothesis”

“the statistic” (e.g., t-value or y?)
— calculable for the null hypothesis
— intuitively should be “deviation from” in some way

“the critical region” a

— biologists use 0.05 Phys. Rev. Lett. discovery threshold:

— physicists use 0.0026 (3 o)
one-sided or two? 5 6 (0.000057 percent)

— somewhat subjective
— use one-sided only when the other side has an understood and innocuous interpretation

:f theI data is in the critical region, the null hypothesis is ruled out at the a significance
eve
after seeing the data you

— may adjust the significance level a

— may not try a different statistic, because any statistic can rule out at the a level in 1/a tries
(“data dredging” for a significant result!)

if )/ou decided in advance to try N tests, then the critical region for a significance is
o/N (Bonferroni correction).




frequentist view of null hypothesis (DNA example):

Count nucleotides A,C,G, T on SacCer Chr4:

Take the file SacSerChr4.txt (on
course web site).

Count the letters A,C,G,T.
You should get:

A = 476750
C = 289341

G = 291352 _ :
T = 474471 Are these counts consistent with the model

pa=pc =pc =pr =0.257

(Of course not! But we'll check.)

Are they consistent with the model
pa=pr~03l pc=pg~0197

That’s a deeper question! You might think yes,
because of A-T and C-G base pairing.

but what is the model?



frequentist view of null hypothesis (DNA example):

For practice with p- and t-values, let’s look at the Sac cer genome.

We'll use as a data set all of Chromosome 4.
Yeast and Human are very close relatives in the great scheme of things.

Saccharomyces cerevisiae

= baker’s yeast
goal is to build probability models for

chromosome 4 from four nucleobases
ACGT and subject them to null hypothesis

Watson-Crick base pairs:

Chromosome 4: i : ! .
ACACCACACC (1531894 omitted) TAGCTTTTGG (guanine-cytosine and adenine-thymine)
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https://en.wikipedia.org/wiki/Guanine
https://en.wikipedia.org/wiki/Cytosine
https://en.wikipedia.org/wiki/Adenine
https://en.wikipedia.org/wiki/Thymine

molecular biology on one slide:

' THYMINE
0=p-0- cus .
9 H A0 M aoenine 0=p-0°
i
CH, ') H 0
N N-H = N\ H
o : EEEEE N
AL N | \r A W\
(4] . \“ N
0

? H CYTOSINE c"Z
0=p-0" H H

9 H <@ GUANINE 0= p o

CH: o

N----H—u Y
H H H Y H H
----- H—N Xy
? H 0 cu2
0=p-0°
?

//"_‘\\\.
/] tRNAS |
with
amin oacic} mRNA
/’ r‘“‘\“:: :

e '::>
%nfclded

polypeptide
y%am

https://en.wikipedia.org/wiki’/DNA#Base_pairing

https://en.wikipedia.org/wiki/Base_pair

adenine-thymine
guanin-cytosin



https://en.wikipedia.org/wiki/Base_pair
https://en.wikipedia.org/wiki/DNA#Base_pairing

frequentist view of null hypothesis (DNA example):

As always, the starting point is to write down a model. Bayesian: What is
the probability of hypothesis. Frequentist: What is the probability of a test
statistic for a null hypothesis.

A possible model is multinomial: At each position an i.i.d. choice of A,C,G,T,
with respective probabilities adding up to 1.

Almost equivalent (and simpler for now) is 4 separate binomial models: At
each position an i.i.d. choice of A vs. not A with some probability p,.
Then do separately for pe, pPg, Pt

The counts are all so large that the normal approximation is highly

accurate:
Bin(n, p) ~ Normal(np, \/ np(l —p))

Why? CLT applies to binomial because it's sum of Bernoulli r.v.’s: N
tries of an r.v. with values 1 (prob p) or O (prob 1-p).

p=px1+(1—p)x0=p

0?=pxX(1—p)*+(1—p) x(0—p)?=p1-p)



frequentist view of null hypothesis (DNA example):

Let’s dispose of the silly (all p's = 0.25):

The test statistic: the value of the observed count under the null hypothesis
that it is binomially (or equivalent normally) distributed with p=0.25.

uw=0.25N

0 = \/025 x0.75N t-value = number of standard deviations

t = p-value = tail probability (here, 2-tailed)
g —— s e
/ 2 | o |1\ 2 3
P = 2[1 — PNormal(Itl)] o
t-value p-value
A 174965 | =0 The null hypothesis is (totally,
infinitely, beyond any possibilit
C -174.715 | =0 Y -y | yb Y
of redemption!) ruled out.
G -170.963 | =0
T 170.713 ~ 0




frequentist view of null hypothesis (DNA example):

The not-silly model: A and T occur with identical probabilities, as do C and G.

The test statistic: Difference between A and T (or C and G) counts under
the null hypothesis that they have the same p, which we will estimate in the

obvious way (which is actually an MLE).

par = 5(na+nr)/N

pecc = 5(nc +ng)/N

na ~ Normal(Npar, /Npar(l — par))
ny ~ Normal(Npar, /Npar(1l — par))
= n4 — np ~ Normal(0, \/2NﬁAT(1 — Par))

_— AN

the difference of two Normals is the variance of the sum (or
itself Normal difference) is the sum of the

variances




frequentist view of null hypothesis (DNA example):

In MATLAB the calculation now looks like this:

dif = [count(1l)-count(3); count(2)-count(4) ] A = 476750
pdiff = [pnuc(l); pnuc(2)] C = 289341
mu = [0; O]; G = 291352
sig = sqrt(2 .* pdiff .* (1 - pdiff) .* len) T =474471
tval = (dif - mu) ./ sig
pval = 2*¥(1-normcdf(abs(tval),0,1))
dif = 2-tailed
:%ﬁ Why? Because, we're discovering genes!
pdiff = E—
0. 3097 - —l- - + strand
0.1889 -
mu = L —— -strand
0
0 The fluctuating “units” are indeed not single bases.
s7ig = Rather, they are genes which, individually, do not
809.3402 have (or prefer) A=T, C=G. Their placement on
685.1154 one strand or the other is random.
tval = N
-2.8159 :
> 9353 Surprise! |
pval = > The model is ruled out
0.0049 with high significance
0.0033
(small p-value)!




