Lecture 4.
probability calculus and the central limit
theorem



distribution functions:

We are often interested in distributions that have some kind of
localization (because why would we be interested if they didn’t?)
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Suppose we want to summarize p(x) by a single number
a, its “value”. Let’s find the value a that minimizes the
mean-square discrepancy of the “typical” value x:




distribution functions:

Recall expectation notation:

(anything) = [ (anything) p(z)dx

..e., the weighted average of “anything”, weighted by the probable values of x.
Expectation is linear over “anything” (sums, constants times, etc.).

minimize: A® = ((z —a)?) = (2° — 2az + a?)
2
= ((z*) = (©)°) + ((z) — @)
This is the variance Var(x), /
but all we care about here is
that it doesn’t depend on a.

(in physics this is called the “parallel axis theorem”)

The minimum is obviously a = (z). (Take derivative
wrt a and set to zero if you like mechanical calcula-
tions.)



distribution functions:

Why mean-square? Why not mean-absolute? Try it!

A=(o—a) = [ lo—alp)ds

— 0O

= /_;(a, — ) p(x)dx + /aoo(m —a) p(x)dx

So,
dA a oo
O=—:/ p(x)dr + 0 — p(x)dx + 0
da oo
= \/

a o0 Integrand at a
| p@yiz= [ pa)as
— 00 a

= a 1s the median value

Mean and median are both “measures of central tendency”.



distribution functions:

Higher moments, centered moments are conventionally defined by

pi = (z') = [ ' p(z)de |
M = (@ — o)) = [(@ — (2))' pla)do

The centered second moment M, , the variance, is by far
most useful
M, = Var(z) = ((z — (2))?) = (?) — ()’

o(x) = \/ Var(z) < ‘standard deviation” summarizes a distribution’s half-width
(r.m.s. deviation from the mean)

Third and fourth moments also have “names”

Skewness Kurtosis

negative

positive
/ (leptokurtic)
v

negative——,” <—— positive (platykurtic) _¥ _ -
/

But generally wise to be cautious about using high moments.
Otherwise perfectly good distributions don’t have them at all
(divergent). And (related) it can take a lot of data to measure

them accurately.



distribution functions:

Let us review some standard (i.e., frequently occurring) distributions:

The “bell shaped” ones differ qualitatively by their tail behaviors:
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distribution functions:

Normal (Gaussian) has the fastest falling tails:

x ~ N(u. o), o >0

o (_l X — U 2)
plx) = S exp 5[ - ]

Cauchy (aka Lorentzian) has the slowest falling tails:

x ~ Cauchy(u, o), o>0

o= (1 [54)

Cauchy has area=1 (zerot» moment), but no defined mean or
variance (1st and 2" moments divergent).




characteristic function:

The Central Limit Theorem is the reason that the Normal (Gaussian) distribution
is uniquely important. We need to understand where it does and doesn’t apply.

The characteristic function of a distribution is its
Fourier transform.

dx(t) = /00 eit’”px(a:)dx

— OO

(Statisticians often use notational convention that X is a random
variable, x its value, p,(x) its distribution.)

¢x(0) =1
P (0) = / izpx (z)dz = ip

~0%(0) = [ *px(a)do = o + 42

So, the coefficients of the Taylor series expansion of the
characteristic function are the (uncentered) moments.

: 1 2,2
t—ao0°t
¢Normal (t) — eZM 27



characteristic function:

Addition of independent r.v.’s:

let S=X+4+Y

ps(s) = /pX (u)py (s — u)du
¢s(t) = ox(t)py (t)
Last line follows immediately from the Fourier

convolution theorem. (In fact, it is the Fourier
convolution theorem!)



distribution functions:

Proof of convolution theorem:

bx(t) = / " et (2)da

—00

L [ .
px(z) = —/ Ox(t)e " dt
2T

— 00

ps(s) = /—00 px (u)py (s — u)du

(0. &)

Z/oopx(U) [i]oo(ﬁ
Lo
— / Oy (1) px (t)e "t dt

Fourier transform pair

y(t)e =) dt] du

px(u) eit“du] dt



distribution functions:

Mean and variance are additive over independent random variables:

(x+y)=X+YV Var(x 4+ y) = Var(x) + Var (y)

AN

note “bar’ notation, equivalent to < >

Certain combinations of higher moments are also additive. These
are called semi-invariants.

Ib=M, Iz=Ms I4=M4y—3M;
Is = Ms—10MaM3 I = Mg — 15MaMy — 10M3 + 30M5

Skew and kurtosis are dimensionless combinations of semi-invariants
Skew(x) = I3/13'*  Kurt(x) = I4/13

A Gaussian has all of its semi-invariants higher than 7, equal to zero.
A Poisson distribution has all of its semi-invariants equal to its mean.



characteristic function:

Scaling law for r.v.’s:

() {

Scaling law for characteristic functions:

bax(t) = / it x (z)da

L1
— /ezta:_pX (E) dx
a a
| d
_ / ane/op, () 42
a a

— ¢X (at)




central limit theorem:

Let S=%Y>X; =) & with (X;) =0

Can always subtract off the means, then add back later.

Then

t2 Whoal! It better have a
_ (1 _ 10.2_ 4 .. ) convergent Taylor series
around zero! (Cauchy
doesn'’t, e.g.)

t2
= exp Zln(l—%af—z—l—---)

_ These terms decrease with N, but how fast?
1 (1 2\
~ €XP —5 m E g; + -
: () -
So, S is normally distributed

pg(+) ~ Normal(0, % > a,?)




central limit theorem:

CLT is usually stated about the sum of RVs, not the average, so

ps(+) ~ Normal(0, ﬁ S o?)

Now, since
NS=Y X, and Var(NS)= N?Var(S)

it follows that the simple sum of a large number of
r.v.’s is normally distributed, with variance equal to

the sum of the variances:

ps~ x,(+) ~ Normal(0, > o)

If N is large enough, and if the higher moments are well-enough behaved,
and if the Taylor series expansion exists!

Also beware of borderline cases where the assumptions technically hold, but
convergence to Normal is slow and/or highly nonuniform. (This can affect p-

values for tail tests, as we will soon see.)



central limit theorem:
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central limit theorem:

Since Gaussians are so universal, let’s learn estimate the parameters u
and o of a Gaussian from a set of points drawn from it:

For now, we'll just find the maximum of the posterior distribution of (u,o),
given some data, for a uniform prior. This is called “maximum a posteriori
(MAP)” by Bayesians, and “maximum likelihood (MLE)" by frequentists.
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The statistical modelis:  P(x|u,0) = | |
i

1 1 y
The posterior estimate is: P(u, o|x) e 202 S i(@i—p)? v % 3”' orm
2moN

Now find the MAP (MLE):

OP P 1 Ha! The MAP mean is the sample
0= —=— r; — Nu = U= — Z; mean, the MAP variance is the

o o3 (ZZ: ) N Zz: sample variance!

orP P 1
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