HW5: Burgers' equation and the $4 / 5$ Kolmogorov's law

To be returned on February 23, 2017

I. TRAVELING SHOCK IN BURGERS' EQUATION

During our class, we found the steady shock for the 1D Burgers' equation

$$
\begin{equation*}
\partial_{t} u(x, t)+\frac{1}{2} \partial_{x} u^{2}=\nu \partial_{x}^{2} u \tag{1}
\end{equation*}
$$

when we maintain the velocities $u \rightarrow \pm U$ as $x \rightarrow \mp \infty$.

1) Generalize the solution to the case when we maintain the velocities at infinity $u(-\infty)=U_{-}$and $u(+\infty)=U_{+}$ with $U_{-}>U_{+}$.
2) Verify that the dissipation remains finite in the limit $\nu \rightarrow 0$.
3) The velocity of the shock that you have found above is a special case of the Rankine-Hugoniot condition. By integrating the conservation law

$$
\begin{equation*}
\partial_{t} w(x, t)+\partial_{x} f(w)=0, \tag{2}
\end{equation*}
$$

around a shock moving with velocity V_{s}, derive the Rankine-Hugoniot relation $V_{s}=\frac{f_{+}-f_{-}}{w_{+}-w_{-}}$where the subscripts \pm refer to the value on the proximal right and left of the shock, respectively.

II. PRE-SHOCK IN BURGERS' EQUATION

During our class, we have shown that the first shock occurs at a time t^{*} determined by the minimum value of the gradient field at the initial time. The initial gradient and velocity fields are denoted $g_{0}(a)$ and $u_{0}(a)$, with $g_{0}=\partial_{a} u_{0}$. Denote the absolute minimum as $\min _{a} g_{0}(a)=-G$ and expand $g_{0}(a) \simeq-G+\alpha / 2 a^{2}+\ldots$ around its minimum, which is assumed to be at the origin.

1) Denote by $X(a, t)$ the position at time t of a particle that was initially at a. Write down the expression for X in terms of a and $u_{0}(a)$.
2) Re-derive the relation between the first shock time t^{*} and G.
3) Show that the inverse Lagrangian map $a(X, t)$ at $t=t^{*}$ behaves singularly around the origin $X=0$, namely it has a $1 / 3$ power-law behavior.
4) Show that at the time t^{*} the velocity $u(X, t)$ also develops a $1 / 3$ singular behavior at the origin.
5) Show that the enstrophy $\Omega(t)=\int(\partial u / \partial x)^{2} d x$ diverges as $\left(t^{*}-t\right)^{-1 / 2}$ as t approaches t^{*}.

III. HOPF-COLE TRANSFORMATION FOR BURGERS' EQUATION

Define the stream function as $u=-\partial_{x} \psi(x, t)$. By taking the space derivative of the Burgers' equation, write down the equation for ψ_{t}. An unknown function $g(t)$ appears when a space-derivative is factored out. Suppose first that the unknown time-dependent function $g(t)=0$.

1) Use the Hopf-Cole transformation $\psi(x, t) \equiv 2 \nu \log \theta(x, t)$ to reduce the previous equation for ψ_{t} to the heat equation.
2) Use the Gaussian propagator for the heat equation to obtain the expression of $\theta(x, t)$.
3) In the limit $\nu \rightarrow 0$, show that $\psi(x, t)=\max _{a}\left[\psi_{0}(a)-\frac{(x-a)^{2}}{2 t}\right]$. Interpret the max as follows: considers a parabola $\frac{(a-x)^{2}}{2 t}+C$ centered at x, start with a big constant C and reduce it until you contact the curve $\psi_{0}(a)$ for the first time.
4) Interpret double contacts, i.e. first contact at two different a values for a given x. What is the velocity profile resulting from multiple x 's having the same contact point a ?
5) Can you adapt the arguments in 1) to the case $g(t) \neq 0$?

IV. KOLMOGOROV " $4 / 5 "$ LAW FOR BURGERS' EQUATION

By using the same procedure that we discussed in class for the Navier-Stokes equation, derive the relation

$$
\begin{equation*}
\left\langle(u(x)-u(0))^{3}\right\rangle=-12 \varepsilon x \tag{3}
\end{equation*}
$$

for the Burgers' equation. Here, ε is the dissipation rate.

V. MISSING PARTS IN THE DERIVATION OF THE KOLMOGOROV 4/5 LAW

We shall complete the derivation sketched in class of the $4 / 5$ Kolmogorov law.

1) Use incompressibility to show that the two functions $B_{N N}(r)$ and $B_{L L}(r)$ in

$$
\begin{equation*}
\left\langle\left(v_{i}(\boldsymbol{r})-v_{i}(\mathbf{0})\right)\left(v_{j}(\boldsymbol{r})-v_{j}(\mathbf{0})\right)\right\rangle \equiv B_{N N} \delta_{i j}+\left(B_{L L}-B_{N N}\right) \frac{r_{i} r_{j}}{r^{2}} \tag{4}
\end{equation*}
$$

are related as $B_{N N}=\left(1+r / 2 \partial_{r}\right) B_{L L}$.
Use this expression to prove that the component proportional to $\delta_{i j}$ in the time-dependent term $\partial_{t}\left\langle v_{i}(\mathbf{0}) v_{j}(\boldsymbol{r})\right\rangle$ and the viscous term $2 \nu \Delta\left\langle v_{i}(\mathbf{0}) v_{j}(\boldsymbol{r})\right\rangle$ in the Navier-Stokes equation read:

$$
\begin{equation*}
\left(1+\frac{r}{2} \partial_{r}\right)\left(-\frac{2}{3} \varepsilon-\frac{1}{2} \partial_{t} S_{2}(r, t)\right) ; \quad-\nu\left(1+\frac{r}{2} \partial_{r}\right)\left(\frac{1}{r^{4}} \partial_{r}\left(r^{4} \partial_{r} S_{2}(r, t)\right)\right) \tag{5}
\end{equation*}
$$

where the second-order longitudinal structure function $S_{2}=B_{L L}$.
2) Use incompressibility to show that the three functions $F_{1}(r), F_{2}(r)$ and $F_{3}(r)$ in

$$
\begin{equation*}
b_{i j, k} \equiv\left\langle v_{i}(\boldsymbol{r}) v_{j}(\boldsymbol{r}) v_{k}(\mathbf{0})\right\rangle \equiv F_{1} \delta_{i j} \frac{r_{k}}{r}+F_{2}\left(\delta_{i k} \frac{r_{j}}{r}+\delta_{j k} \frac{r_{i}}{r}\right)+F_{3} \frac{r_{i} r_{j} r_{k}}{r^{3}}, \tag{6}
\end{equation*}
$$

are related by

$$
\begin{equation*}
F_{2}=-\left(1+\frac{r}{2} \partial_{r}\right) F_{1} ; \quad F_{3}=-F_{1}+r \partial_{r} F_{1} \tag{7}
\end{equation*}
$$

3) Show that the longitudinal third-order structure $S_{3}(r) \equiv\left\langle\left(v_{i}(\boldsymbol{r})-v_{i}(\mathbf{0})\right)\left(v_{j}(\boldsymbol{r})-v_{j}(\mathbf{0})\right)\left(v_{k}(\boldsymbol{r})-v_{k}(\mathbf{0})\right)\right\rangle \frac{r_{i} r_{j} r_{k}}{r^{3}}=$ $12 F_{1}(r)$.
4) Show that the component proportional to $\delta_{i j}$ for the non-linear terms $\partial_{r_{k}}\left[b_{k j, i}-b_{j, k i}\right]$ in the Navier-Stokes equation reads

$$
\begin{equation*}
-2\left(1+\frac{r}{2} \partial_{r}\right)\left(\frac{1}{r^{4}} \partial_{r}\left(r^{4} F_{1}(r, t)\right)\right) \tag{8}
\end{equation*}
$$

5) Gather all bits and pieces to obtain (34.20) in Landau-Lifchitz book

$$
\begin{equation*}
-\frac{2}{3} \varepsilon-\frac{1}{2} \partial_{t} S_{2}=\frac{1}{6 r^{4}} \partial_{r}\left(r^{4} S_{3}\right)-\nu \frac{1}{r^{4}} \partial_{r}\left(r^{4} \partial_{r} S_{2}\right), \tag{9}
\end{equation*}
$$

which finally yields the $4 / 5$ law.

