
PHYSICS 200B : CLASSICAL MECHANICS

SOLUTION SET #4

(1) Consider two coupled nonlinear oscillators, with

dϕ1

dt
= V1(ϕ1) + ǫF1(ϕ1,ϕ2)

dϕ2

dt
= V2(ϕ2) + ǫF2(ϕ1,ϕ2) .

Assume that for ǫ = 0 each of the oscillators exhibits at least one stable limit cycle. Assume
further that the natural frequencies ω1,2 of their respective limit cycles are close to resonance.
That is, assume that the detuning

ν = mω1 − nω2

is small for some integer values of m and n.

(a) Using the phase representation and isochrones for each oscillator, show that to lowest
order one may write

dφ1
dt

= ω1 + ǫQ1(φ1, φ2)

dφ2
dt

= ω2 + ǫQ2(φ1, φ2) .

Solution: We have :

dφ1
dt = ∂φ1

∂ϕ1

∂ψ1

∂t + ∂φ1
∂ϕ2

∂ϕ2

∂t

= ( ∂φ1∂ϕ1
V1(ϕ1) +

∂φ1
∂ϕ2

V2(ϕ2)) + ǫ( ∂φ1∂ϕ1
F1(ϕ1, ϕ2) +

∂φ1
∂ϕ2

F2(ϕ1, ϕ2))

= ω1 + ǫQ1(φ1, φ2)

In the last step, we assume ψs are closing to the limit circle. Similarly, we have:

dφ2
dt = ω2 + ǫQ2(φ1, φ2)

where:

Q1,2(φ1, φ2) =
∂φ1,2
∂ϕ1

∣

∣

∣

γ1(φ1)
F1(γ1(φ1), γ2(φ2)) +

∂φ1,2
∂ϕ2

∣

∣

∣

γ2(φ2)
F2(γ1(φ1), γ2(φ2))

(b) Expand the functions Q1,2(φ1, φ2) in a double Fourier series in their arguments. What
terms satisfy the (near) resonance condition?

Solution: We can Fourier transform Q1,2:

Q1,2(φ1, φ2) =
∑

m,n

Q1,2,m,ne
i(mφ1−mφ2)
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The resonance condition occurs when m and n satisfy the following condition:

mω1 − nω2 = 0

This is only possible if ω1/ω2 is a rational number p/q, where p and q are relatively
prime integers. In this case, the resonant terms can be written as:

Q1,2(φ1, φ2) =
∑

j

Q1,2,jq,jpe
i(jqφ1−jpφ2)

(c) Keeping only the terms which are nearly resonant, define ψ = mφ1 − nφ2 and derive
an ODE describing the behavior of ψ. Analyze this ODE and classify its fixed points.
What is the condition for synchronization of the two nonlinear oscillators?

Solution: We define ψ = qφ1 − pφ2. Then the ODE of ψ reads:

dψ
dt = qω1 − pω2 + ǫ

∑

j

(Q1,jq,jp +Q2,jq,jp)e
ijψ

= ν + ǫg(ψ)

Therefore if the detuning ν lies within the range [gmin, gmax], the two nonlinear oscil-
lators synchronize with each other.

(2) Consider the function F (x) defined by

F (x) =























−x if 0 ≤ 1 ≤ 1

3x− 4 if 1 ≤ x ≤ 2

−5x+ 12 if 2 ≤ x ≤ 3

7x− 24 if x ≥ 3

with F (−x) ≡ −F (x).

(a) Sketch F (x) over the interval x ∈ [−4, 4].

Solution: See Fig. 1.

(b) Consider the nonlinear oscillator ẍ+µF ′(x) ẋ+x = 0. Find all the stable limit cycles
and their periods for µ≫ 1.

Solution: It is straightforward to see there are two limit circles, as illustrated in Fig. 1 (b),
Now we compute their period, respectively. For the first one, we have a = 3 and b = 27/7,
then the period is :

T = −2µ

∫ a

b

F ′(x)
x = 14 log(97 )µ

Similarly, for the second one, we have a = 1 and b = 5/3, then the period is :

T = −2µ

∫ a

b

F ′(x)
x = 6 log(53 )µ
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Figure 1: (a) The blue arrows indicate slow mode and the red arrows indicate fast mode.
(b) The two limiting cycles are shown

(3) Use the method of characteristics to solve the quasilinear PDE

φt + γ xφx = −Bx2φ ,

subject to the initial condition φ(x, 0) = f(x).

Solution: using the method of characteristics, we have:

dt
ds = 1

dx
ds = γx

which yields: t = s and x = ξeγs. Then the ODE of φ reads:

dφ
ds = −Bξ2e2γsφ

The solution that satisfies the initial condition is:

φ = f(ξ)e
−Bξ

2

2γ (e2γs−1)

= f( x
eγt )e

−Bx
2

2γ (1−e−2γt)

(4) Consider shock formation in the equation* ct + c cx = 0 with initial conditions c(ζ) =
c(x = ζ, t = 0) an odd function of its argument, i.e. c(−ζ) = −c(ζ). Suppose further that
c(ζ) is monotonically decreasing.

(a) Find an expression for the time the wave first breaks, t
B
.

Solution: t
B
= min(− 1

c′(ζ))
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(b) Show that ζ− = −ζ+ and find an equation* relating ζ+ and t for t > t
B
.

Solution:

1
2(ζ+ − ζ−)(c(ζ+) + c(ζ−)) =

∫ ζ+

ζ
−

c(ζ)dζ

This gives the relation ζ+ = ζ−, which obviously satisfy the equation*. Then we have:

ζ+ + c(ζ+)t = ζ− + c(ζ−)t

Using the property of odd functions, we get that t = −ζ+/c(ζ+) and xs(t) = ζ+ +
c(ζ+)t = 0.

(c) Show that the position of the shock remains at xs(t) = 0 for all t > t
B
.

Solution: See above.

(d) Find t
B
, ζ+(t), and the shock discontinuity ∆c(t) for the case

c(ζ) = − c0 ζ
√

a2 + ζ2
.

Solution: After absorbing c0 into c, and a into ζ. the initial condition reads:

c(ζ) = − ζ√
1+ζ2

The maximum of the derivative occurs at ζ = 0, where c′(ζ) = −1. Thefore t
B
= 1.

Furthermore, from above, we know that −ζ+/c(ζ+) =
√

1 + ζ2. Thus we obtain that

ζ+ =
√
t2 − 1. The shock discontinuity reads ∆c(t) = −2c(ζ+) =

√
t2+1
t .

(e) Sketch the time evolution of c(x, t) with and without the shock fitting. (Without
shock fitting, the function will eventually become multivalued.)

Solution: See Fig. 2

(5) Consider shock formation in the equation* ct + c cx = 0 with initial conditions

c(x, t = 0) =
c0

1 + x2
.

(a) Find the position and time (x
B
, t

B
) where the wave first breaks.

Solution: Again we consider the dimensionless initial condition:

c(ζ) = 1
1+ζ2

The second derivative reads

c′′(ζ) = 8ζ2

(ζ2+1)3
− 2

(ζ2+1)2

There are two solutions if we demand c′′(ζ) = 0. The solution x = 1/
√
3 corresponds

to the minimum of the first derivative c′(ζ), which equals −3
√
3

8 . Therefore t
B
= 8

√
3

9 .
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Figure 2:

(b) Find the two equation*s relating ζ+, ζ−, and t.

Solution: Invoking the the shock fitting equation*, we have:

1
2 (ζ+ − ζ−)(c(ζ+) + c(ζ−)) =

∫ ζ
+

ζ
−

c(ζ)dζ = arctan(ζ+)− arctan(ζ−)

Once we solve ζ− for ζ+, t(ζ+) can be obtained from the following equation*:

ζ+ + c(ζ+)t = ζ− + c(ζ−)t

(c) For general t, your equation*s from part (b) cannot be solved analytically. However,
as t → ∞, one can make progress. Show in the late time limit that ζ+ ∝ ζ2− and
use the first shock fitting equation* to obtain a relation between ζ+ and ζ− valid for
c0t≫ 1.

Solution: Starting from the shock fitting equation*:

1
2(

1
1+ζ2

+

+ 1
1+ζ2

−

)(ζ+ − ζ−) = arctan ζ+ − arctan ζ−

In the long time limit, ζ+ → ∞ and ζ− → −∞, and the equation* above can be
significantly simplified into:

ζ+
ζ2
−

− ζ−
ζ2
+

= 2π

We further require the shock happens at t > 0, which indicates that c(ζ+) < c(ζ−),
leading to |ζ+| > |ζ−|. Then the above equation* gives:

ζ+ = 2πζ2−
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Figure 3:

(d) Invoking the second shock equation*, obtain expressions for ζ±(t) and c
(

ζ±(t)
)

.

Solution: In the long time limit, we have

t = − ζ+−ζ−
c(ζ+)−c(ζ−) = lim

ζ−→∞
−(ζ2

−
+1)(4π2ζ4

−
+1)

ζ−(2πζ−+1) = 2πζ4−

Therefore,
ζ− = −( t

2π )
1/4

ζ+ = 2π( t
2π )

1/2

(e) Find the motion of the shock xs(t) at late times c0t ≫ 1. Show that it agrees with
the late time results derived in §4.5 of the Lecture Notes.

Solution:
xs(t) = lim

t→∞
ζ−(t) + c(ζ−(t))t =

√
2πt

Compared with the lecture notes, there is no linear t dependence here. But this is
OK, since for this particular initial profile, c0 (which is the coefficient of linear term)
vanishes.
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