PHYSICS 200B : CLASSICAL MECHANICS PROBLEM SET #4

(1) Consider two coupled nonlinear oscillators, with

$$egin{aligned} rac{doldsymbol{arphi}_1}{dt} &= oldsymbol{V}_1(oldsymbol{arphi}_1) + \epsilon \, oldsymbol{F}_1(oldsymbol{arphi}_1,oldsymbol{arphi}_2) \ rac{doldsymbol{arphi}_2}{dt} &= oldsymbol{V}_2(oldsymbol{arphi}_2) + \epsilon \, oldsymbol{F}_2(oldsymbol{arphi}_1,oldsymbol{arphi}_2) \ . \end{aligned}$$

Assume that for $\epsilon = 0$ each of the oscillators exhibits at least one stable limit cycle. Assume further that the natural frequencies $\omega_{1,2}$ of their respective limit cycles are close to resonance. That is, assume that the detuning

$$\nu = m\omega_1 - n\omega_2$$

is small for some integer values of m and n.

(a) Using the phase representation and isochrones for each oscillator, show that to lowest order one may write

$$\begin{aligned} \frac{d\phi_1}{dt} &= \omega_1 + \epsilon \, Q_1(\phi_1, \phi_2) \\ \frac{d\phi_2}{dt} &= \omega_2 + \epsilon \, Q_2(\phi_1, \phi_2) \ . \end{aligned}$$

- (b) Expand the functions Q_{1,2}(φ₁, φ₂) in a double Fourier series in their arguments. What terms satisfy the (near) resonance condition?
- (c) Keeping only the terms which are nearly resonant, define $\psi = m\phi_1 n\phi_2$ and derive an ODE describing the behavior of ψ . Analyze this ODE and classify its fixed points. What is the condition for synchronization of the two nonlinear oscillators?
- (2) Consider the function F(x) defined by

$$F(x) = \begin{cases} -x & \text{if } 0 \le 1 \le 1\\ 3x - 4 & \text{if } 1 \le x \le 2\\ -5x + 12 & \text{if } 2 \le x \le 3\\ 7x - 24 & \text{if } x \ge 3 \end{cases}$$

with $F(-x) \equiv -F(x)$.

- (a) Sketch F(x) over the interval $x \in [-4, 4]$.
- (b) Consider the nonlinear oscillator ẍ + µF'(x) ẋ + x = 0. Find all the stable limit cycles and their periods for µ ≫ 1.

(3) Use the method of characteristics to solve the quasilinear PDE

$$\phi_t + \gamma \, x \phi_x = -B x^2 \phi \quad ,$$

subject to the initial condition $\phi(x, 0) = f(x)$.

(4) Consider shock formation in the equation $c_t + c c_x = 0$ with initial conditions $c(\zeta) = c(x = \zeta, t = 0)$ an odd function of its argument, *i.e.* $c(-\zeta) = -c(\zeta)$. Suppose further that $c(\zeta)$ is monotonically decreasing.

- (a) Find an expression for the time the wave first breaks, $t_{\rm B}$.
- (b) Show that $\zeta_{-} = -\zeta_{+}$ and find an equation relating ζ_{+} and t for $t > t_{\text{B}}$.
- (c) Show that the position of the shock remains at $x_{s}(t) = 0$ for all $t > t_{B}$.
- (d) Find $t_{\rm B}$, $\zeta_{+}(t)$, and the shock discontinuity $\Delta c(t)$ for the case

$$c(\zeta) = -\frac{c_0 \, \zeta}{\sqrt{a^2 + \zeta^2}}$$

- (e) Sketch the time evolution of c(x,t) with and without the shock fitting. (Without shock fitting, the function will eventually become multivalued.)
- (5) Consider shock formation in the equation $c_t + c c_x = 0$ with initial conditions

$$c(x,t=0) = \frac{c_0}{1+x^2}$$

- (a) Find the position and time $(x_{\rm B}, t_{\rm B})$ where the wave first breaks.
- (b) Find the two equations relating ζ_+ , ζ_- , and t.
- (c) For general t, your equations from part (b) cannot be solved analytically. However, as $t \to \infty$, one can make progress. Show in the late time limit that $\zeta_+ \propto \zeta_-^2$ and use the first shock fitting equation to obtain a relation between ζ_+ and ζ_- valid for $c_0 t \gg 1$.
- (d) Invoking the second shock equation, obtain expressions for $\zeta_{\pm}(t)$ and $c(\zeta_{\pm}(t))$.
- (e) Find the motion of the shock $x_s(t)$ at late times $c_0 t \gg 1$. Show that it agrees with the late time results derived in §4.5 of the Lecture Notes.