PHYSICS 200B : CLASSICAL MECHANICS PROBLEM SET \#3

(1) Create your own pixelated image to iterate under the cat map. You can also find many interesting images over the web. (Nothing pornographic, please! ${ }^{1}$) Iterate the pixel coordinates under the cat map. Show how your image gets scrambled after a few iterations of the map, but is nevertheless recurrent. You'll need to write a computer code to do this problem.
(2) Numerically integrate the system

$$
\begin{aligned}
\dot{r} & =r\left(1-r^{2}\right)+\lambda r \cos \theta \\
\dot{\theta} & =1
\end{aligned}
$$

with $0<\lambda<1$, and show that any initial condition lying between the concentric circles of radii $\sqrt{1 \pm \lambda}$ approaches a closed limit cycle in the long time limit. Choose whatever value of λ suits your taste.
(3) Consider the equation

$$
\ddot{x}+x=\epsilon x^{5}
$$

with $\epsilon \ll 1$.
(a) Develop a two term straightforward expansion for the solution and discuss its uniformity.
(b) Using the Poincaré-Lindstedt method, find a uniformly valid expansion to first order.
(c) Using the multiple time scale method, find a uniformly valid expansion to first order.
(4) Consider the equation

$$
\ddot{x}+\epsilon \dot{x}^{3}+x=0
$$

with $\epsilon \ll 1$. Using the multiple time scale method, find a uniformly valid expansion to first order.
(5) Analyze the forced oscillator

$$
\ddot{x}+x=\epsilon\left(\dot{x}-\frac{1}{3} \dot{x}^{3}\right)+\epsilon f_{0} \cos (t+\epsilon \nu t)
$$

using the discussion in $\S 3.3 .1$ and $\S 3.3 .2$ of the notes as a template.

[^0]
[^0]: ${ }^{1}$ Well, I suppose animal sex is OK, if you must.

