
PHYSICS 200B : CLASSICAL MECHANICS
SOLUTION SET #2

[1] Consider the nonlinear oscillator described by the Hamiltonian

H(q, p) =
p2

2m
+ 1

2
kq2 + 1

6
ǫbq6 ,

where ε is small.

(a) Find the perturbed frequencies ν(J) to lowest nontrivial order in ǫ.

(b) Find the perturbed frequencies ν(A) to lowest nontrivial order in ǫ, where A is the
amplitude of the q motion.

(c) Find the relationships φ = φ(φ0, J0) and J = J(φ0, J0) to lowest nontrivial order in ǫ.

Solution: In terms of the action variables of the harmonic oscillator, the full Hamiltonian
reads:

H(φ0, J0) = ν0J0 +
1
6
ǫb(

√

2J0
mν0

sinφ0)
6 (1)

where ν0 is the intrinsic frequency given by
√

k/m. The first order perturbation of the
energy is:

E1(J) = 〈H̃1(φ0, J)〉 =
4
3

bJ3

m3ν3
0

2π
∫

0

sin6 φ0
dφ0

2π = 5
12

bJ3

m3ν3
0

(2)

Then the first order perturbed frequency is:

ν1 =
5

4

bJ2

m3ν3
0

= 5

16

bA4

mν0
(3)

The first order of the action is determined by the following first-order differentiate equation

ν0
∂S1

∂φ0
= 〈H̃1〉 −H1 =

bJ3

m3ν3
0

( 5
12

− 4
3
sin6 φ0) (4)

Integrating over the above the equation, we obtain

S1 =
1

144
bJ3

m3ν4
0

(45 sin 2φ0 − 9 sin 4φ0 + sin 6φ0) (5)

Thus, we have

φ = φ0 +
∂S1

∂J = φ0 +
ǫ
48

bJ2

m3ν4
0

(45 sin 2φ0 − 9 sin 4φ0 + sin 6φ0)

J0 = J + ∂S1

∂φ0
= J + ǫ

24
bJ3

m3ν4
0

(15 cos 2φ0 − 6 cos 4φ0 + cos 6φ0)
(6)

Inverting the second equation up to O(ǫ2), we reach the final answer:

J = J0 −
ǫ
24

bJ3

0

m3ν4
0

(15 cos 2φ0 − 6 cos 4φ0 + cos 6φ0) (7)
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[2] Consider the Hamiltonian

H(q, p) =

(

1 + ǫ
q2

a2

)

p2

2m
+ 1

2
mω2

0q
2 ,

where ε is small.

(a) Find the perturbed frequencies ν(J) to lowest nontrivial order in ǫ.

(b) Find the perturbed frequencies ν(A) to lowest nontrivial order in ǫ, where A is the
amplitude of the q motion.

(c) Find the relationships φ = φ(φ0, J0) and J = J(φ0, J0) to lowest nontrivial order in ǫ.

Solution: In terms of the action variables of the harmonic oscillator, the full Hamiltonian
reads:

H(φ0, J0) = ω0J0 + 2ǫ
J2

0

ma2
sin2 φ0 cos

2 φ0 (8)

Therefore, the first order perturbation of the energy is:

E1(J) = 〈H̃1(φ0, J)〉 =
2J2

ma2

2π
∫

0

sin2 φ0 cos
2 φ0

dφ0

2π = J2

4ma2
(9)

Then the first order perturbed frequency is:

ν1 =
J

2ma2 = ω0A2

4a2 (10)

The first order of the action is determined by the following first-order differentiate equation

ω0
∂S1

∂φ0
= 〈H̃1〉 −H1 =

J2

ma2
(1
4
− sin2 φ0 cos

2 φ0) (11)

Integrating over the above the equation, we obtain

S1 =
1
16

J2

ma2ω0
sin 4φ0 (12)

Thus, we have
φ = φ0 +

∂S1

∂J = φ0 +
ǫ
8

J
ma2ω0

sin 4φ0

J0 = J + ∂S1

∂φ0
= J + ǫ

2
J2

ma2ω0
cos 4φ0

(13)

Inverting the second equation up to O(ǫ2), we reach the final answer:

J = J0 −
ǫ
2

J2

0

ma2ω0
cos 4φ0 (14)
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[3] Consider the n = 2 Hamiltonian H(J ,φ) = H0(J) + ǫH1(φ) , where

H0(J) = ΛJ
3/2
1 +ΩJ2

H1(φ) = cosφ1

∞
∑

−∞

Vn e
inφ

2 .

(a) Obtain an expression for J1(t) valid to first order in ǫ.

(b) Which tori are destroyed by the perturbation?

Solution: from the unperturbed part, we obtain the zeroth order of the two frequencies:

ν1,0 =
∂H0

∂J1
= 3

2
ΛJ

1/2
1

ν2,0 =
∂H0

∂J2
= Ω

(15)

We proceed formally as before, and reach the differential equation that determines S:

ν1,0
∂S1

∂φ1,0
+ ν2,0

∂S1

∂φ2,0
= 〈H1〉 −H1 = − cosφ1

∞
∑

−∞

Vn e
inφ

2 (16)

The solution is given by:

S1 =
i
2

∞
∑

−∞

(

Vn
nν2,0+ν1,0

einφ2,0+iφ1,0 + Vn
nν2,0−ν1,0

einφ2,0−iφ1,0

)

(17)

Therefore,

J1,0 = J1 + ǫ ∂S
∂φ1,0

= J1 + ǫ
∞
∑

−∞

(

Vn
nν2,0+ν1,0

einφ2,0+iφ1,0 − Vn
nν2,0−ν1,0

einφ2,0−iφ1,0

)

(18)

where
φ1,0(t) = φ1,0(0) + ν1,0t

φ2,0(t) = φ2,0(0) + ν2,0t
(19)

When the ratio between ν0,1 and ν0,2 is a integer, one of the terms in the series diverges,
implying the breaking down of the perturbation theory. As a consequence, the tori specified
by the following condition:

ν0,1
ν0,2

= 3
2

ΛJ
1/2
1,0

Ω
= n (20)

are destroyed by arbitrarily small pertubation.

[4] Is the following four-dimensional map canonical?

xn+1 = 2αxn − γx2n − pn +X2
n

pn+1 = xn

Xn+1 = 2βXn − Pn + 2xnXn

Pn+1 = Xn .
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Solution: The strategy here is to check whether this map preserves the symplectic structure
of the Hamiltonian equation, namely whether the Jacobian of the transformation M satisfies
MJMT = J . Define the original vector ξ = (xn,Xn, pn, Pn) and the transformed vector
Ξ = (xn+1,Xn+1, pn+1, Pn+1). Explicitly, the Jacobian is:

M = ∂Ξ
∂ξ =









2α− 2γX 2X −1 0
2X 2x+ 2β 0 −1
1 0 0 0
0 1 0 0









(21)

Then it is straightforward to show that, indeed,

MJMT = J (22)

Therefore M is symplectic and the transformation is canonical.
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