PHYSICS 200B : CLASSICAL MECHANICS SOLUTION SET \#2

[1] Consider the nonlinear oscillator described by the Hamiltonian

$$
H(q, p)=\frac{p^{2}}{2 m}+\frac{1}{2} k q^{2}+\frac{1}{6} \epsilon b q^{6},
$$

where ε is small.
(a) Find the perturbed frequencies $\nu(J)$ to lowest nontrivial order in ϵ.
(b) Find the perturbed frequencies $\nu(A)$ to lowest nontrivial order in ϵ, where A is the amplitude of the q motion.
(c) Find the relationships $\phi=\phi\left(\phi_{0}, J_{0}\right)$ and $J=J\left(\phi_{0}, J_{0}\right)$ to lowest nontrivial order in ϵ.

Solution: In terms of the action variables of the harmonic oscillator, the full Hamiltonian reads:

$$
\begin{equation*}
H\left(\phi_{0}, J_{0}\right)=\nu_{0} J_{0}+\frac{1}{6} \epsilon b\left(\sqrt{\frac{2 J_{0}}{m \nu_{0}}} \sin \phi_{0}\right)^{6} \tag{1}
\end{equation*}
$$

where ν_{0} is the intrinsic frequency given by $\sqrt{k / m}$. The first order perturbation of the energy is:

$$
\begin{equation*}
E_{1}(J)=\left\langle\tilde{H}_{1}\left(\phi_{0}, J\right)\right\rangle=\frac{4}{3} \frac{b J^{3}}{m^{3} \nu_{0}^{3}} \int_{0}^{2 \pi} \sin ^{6} \phi_{0} \frac{d \phi_{0}}{2 \pi}=\frac{5}{12} \frac{b J^{3}}{m^{3} \nu_{0}^{3}} \tag{2}
\end{equation*}
$$

Then the first order perturbed frequency is:

$$
\begin{equation*}
\nu_{1}=\frac{5}{4} \frac{b J^{2}}{m^{3} \nu_{0}^{3}}=\frac{5}{16} \frac{b A^{4}}{m \nu_{0}} \tag{3}
\end{equation*}
$$

The first order of the action is determined by the following first-order differentiate equation

$$
\begin{equation*}
\nu_{0} \frac{\partial S_{1}}{\partial \phi_{0}}=\left\langle\tilde{H}_{1}\right\rangle-H_{1}=\frac{b J^{3}}{m^{3} \nu_{0}^{3}}\left(\frac{5}{12}-\frac{4}{3} \sin ^{6} \phi_{0}\right) \tag{4}
\end{equation*}
$$

Integrating over the above the equation, we obtain

$$
\begin{equation*}
S_{1}=\frac{1}{144} \frac{b J^{3}}{m^{3} \nu_{0}^{4}}\left(45 \sin 2 \phi_{0}-9 \sin 4 \phi_{0}+\sin 6 \phi_{0}\right) \tag{5}
\end{equation*}
$$

Thus, we have

$$
\begin{align*}
& \phi=\phi_{0}+\frac{\partial S_{1}}{\partial J}=\phi_{0}+\frac{\epsilon}{48} \frac{b J^{2}}{m^{3} \nu_{0}^{4}}\left(45 \sin 2 \phi_{0}-9 \sin 4 \phi_{0}+\sin 6 \phi_{0}\right) \\
& J_{0}=J+\frac{\partial S_{1}}{\partial \phi_{0}}=J+\frac{\epsilon}{24} \frac{b J^{3}}{m^{3} \nu_{0}^{4}}\left(15 \cos 2 \phi_{0}-6 \cos 4 \phi_{0}+\cos 6 \phi_{0}\right) \tag{6}
\end{align*}
$$

Inverting the second equation up to $O\left(\epsilon^{2}\right)$, we reach the final answer:

$$
\begin{equation*}
J=J_{0}-\frac{\epsilon}{24} \frac{b J_{0}^{3}}{m^{3} \nu_{0}^{4}}\left(15 \cos 2 \phi_{0}-6 \cos 4 \phi_{0}+\cos 6 \phi_{0}\right) \tag{7}
\end{equation*}
$$

[2] Consider the Hamiltonian

$$
H(q, p)=\left(1+\epsilon \frac{q^{2}}{a^{2}}\right) \frac{p^{2}}{2 m}+\frac{1}{2} m \omega_{0}^{2} q^{2}
$$

where ε is small.
(a) Find the perturbed frequencies $\nu(J)$ to lowest nontrivial order in ϵ.
(b) Find the perturbed frequencies $\nu(A)$ to lowest nontrivial order in ϵ, where A is the amplitude of the q motion.
(c) Find the relationships $\phi=\phi\left(\phi_{0}, J_{0}\right)$ and $J=J\left(\phi_{0}, J_{0}\right)$ to lowest nontrivial order in ϵ.

Solution: In terms of the action variables of the harmonic oscillator, the full Hamiltonian reads:

$$
\begin{equation*}
H\left(\phi_{0}, J_{0}\right)=\omega_{0} J_{0}+2 \epsilon \frac{J_{0}^{2}}{m a^{2}} \sin ^{2} \phi_{0} \cos ^{2} \phi_{0} \tag{8}
\end{equation*}
$$

Therefore, the first order perturbation of the energy is:

$$
\begin{equation*}
E_{1}(J)=\left\langle\tilde{H}_{1}\left(\phi_{0}, J\right)\right\rangle=\frac{2 J^{2}}{m a^{2}} \int_{0}^{2 \pi} \sin ^{2} \phi_{0} \cos ^{2} \phi_{0} \frac{d \phi_{0}}{2 \pi}=\frac{J^{2}}{4 m a^{2}} \tag{9}
\end{equation*}
$$

Then the first order perturbed frequency is:

$$
\begin{equation*}
\nu_{1}=\frac{J}{2 m a^{2}}=\frac{\omega_{0} A^{2}}{4 a^{2}} \tag{10}
\end{equation*}
$$

The first order of the action is determined by the following first-order differentiate equation

$$
\begin{equation*}
\omega_{0} \frac{\partial S_{1}}{\partial \phi_{0}}=\left\langle\tilde{H}_{1}\right\rangle-H_{1}=\frac{J^{2}}{m a^{2}}\left(\frac{1}{4}-\sin ^{2} \phi_{0} \cos ^{2} \phi_{0}\right) \tag{11}
\end{equation*}
$$

Integrating over the above the equation, we obtain

$$
\begin{equation*}
S_{1}=\frac{1}{16} \frac{J^{2}}{m a^{2} \omega_{0}} \sin 4 \phi_{0} \tag{12}
\end{equation*}
$$

Thus, we have

$$
\begin{gather*}
\phi=\phi_{0}+\frac{\partial S_{1}}{\partial J}=\phi_{0}+\frac{\epsilon}{8} \frac{J}{m a^{2} \omega_{0}} \sin 4 \phi_{0} \\
J_{0}=J+\frac{\partial S_{1}}{\partial \phi_{0}}=J+\frac{\epsilon}{2} \frac{J^{2}}{m a^{2} \omega_{0}} \cos 4 \phi_{0} \tag{13}
\end{gather*}
$$

Inverting the second equation up to $O\left(\epsilon^{2}\right)$, we reach the final answer:

$$
\begin{equation*}
J=J_{0}-\frac{\epsilon}{2} \frac{J_{0}^{2}}{m a^{2} \omega_{0}} \cos 4 \phi_{0} \tag{14}
\end{equation*}
$$

[3] Consider the $n=2$ Hamiltonian $H(\boldsymbol{J}, \boldsymbol{\phi})=H_{0}(\boldsymbol{J})+\epsilon H_{1}(\boldsymbol{\phi})$, where

$$
\begin{aligned}
& H_{0}(\boldsymbol{J})=\Lambda J_{1}^{3 / 2}+\Omega J_{2} \\
& H_{1}(\boldsymbol{\phi})=\cos \phi_{1} \sum_{-\infty}^{\infty} V_{n} e^{i n \phi_{2}} .
\end{aligned}
$$

(a) Obtain an expression for $J_{1}(t)$ valid to first order in ϵ.
(b) Which tori are destroyed by the perturbation?

Solution: from the unperturbed part, we obtain the zeroth order of the two frequencies:

$$
\begin{align*}
& \nu_{1,0}=\frac{\partial H_{0}}{\partial J_{1}}=\frac{3}{2} \Lambda J_{1}^{1 / 2} \\
& \nu_{2,0}=\frac{\partial H_{0}}{\partial J_{2}}=\Omega \tag{15}
\end{align*}
$$

We proceed formally as before, and reach the differential equation that determines S :

$$
\begin{equation*}
\nu_{1,0} \frac{\partial S_{1}}{\partial \phi_{1,0}}+\nu_{2,0} \frac{\partial S_{1}}{\partial \phi_{2,0}}=\left\langle H_{1}\right\rangle-H_{1}=-\cos \phi_{1} \sum_{-\infty}^{\infty} V_{n} e^{i n \phi_{2}} \tag{16}
\end{equation*}
$$

The solution is given by:

$$
\begin{equation*}
S_{1}=\frac{i}{2} \sum_{-\infty}^{\infty}\left(\frac{V_{n}}{n \nu_{2,0}+\nu_{1,0}} e^{i n \phi_{2,0}+i \phi_{1,0}}+\frac{V_{n}}{n \nu_{2,0}-\nu_{1,0}} e^{i n \phi_{2,0}-i \phi_{1,0}}\right) \tag{17}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
J_{1,0}=J_{1}+\epsilon \frac{\partial S}{\partial \phi_{1,0}}=J_{1}+\epsilon \sum_{-\infty}^{\infty}\left(\frac{V_{n}}{n \nu_{2,0}+\nu_{1,0}} e^{i n \phi_{2,0}+i \phi_{1,0}}-\frac{V_{n}}{n \nu_{2,0}-\nu_{1,0}} e^{i n \phi_{2,0}-i \phi_{1,0}}\right) \tag{18}
\end{equation*}
$$

where

$$
\begin{align*}
& \phi_{1,0}(t)=\phi_{1,0}(0)+\nu_{1,0} t \tag{19}\\
& \phi_{2,0}(t)=\phi_{2,0}(0)+\nu_{2,0} t
\end{align*}
$$

When the ratio between $\nu_{0,1}$ and $\nu_{0,2}$ is a integer, one of the terms in the series diverges, implying the breaking down of the perturbation theory. As a consequence, the tori specified by the following condition:

$$
\begin{equation*}
\frac{\nu_{0,1}}{\nu_{0,2}}=\frac{3}{2} \frac{\Lambda J_{1,0}^{1 / 2}}{\Omega}=n \tag{20}
\end{equation*}
$$

are destroyed by arbitrarily small pertubation.
[4] Is the following four-dimensional map canonical?

$$
\begin{aligned}
x_{n+1} & =2 \alpha x_{n}-\gamma x_{n}^{2}-p_{n}+X_{n}^{2} \\
p_{n+1} & =x_{n} \\
X_{n+1} & =2 \beta X_{n}-P_{n}+2 x_{n} X_{n} \\
P_{n+1} & =X_{n} .
\end{aligned}
$$

Solution: The strategy here is to check whether this map preserves the symplectic structure of the Hamiltonian equation, namely whether the Jacobian of the transformation M satisfies $M J M^{T}=\mathbb{J}$. Define the original vector $\xi=\left(x_{n}, X_{n}, p_{n}, P_{n}\right)$ and the transformed vector $\Xi=\left(x_{n+1}, X_{n+1}, p_{n+1}, P_{n+1}\right)$. Explicitly, the Jacobian is:

$$
M=\frac{\partial \Xi}{\partial \xi}=\left(\begin{array}{cccc}
2 \alpha-2 \gamma X & 2 X & -1 & 0 \tag{21}\\
2 X & 2 x+2 \beta & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

Then it is straightforward to show that, indeed,

$$
\begin{equation*}
M \mathbb{J} M^{T}=\mathbb{J} \tag{22}
\end{equation*}
$$

Therefore M is symplectic and the transformation is canonical.

