PHYSICS 200B : CLASSICAL MECHANICS PROBLEM SET \#2

[1] Consider the nonlinear oscillator described by the Hamiltonian

$$
H(q, p)=\frac{p^{2}}{2 m}+\frac{1}{2} k q^{2}+\frac{1}{6} \epsilon b q^{6}
$$

where ε is small.
(a) Find the perturbed frequencies $\nu(J)$ to lowest nontrivial order in ϵ.
(b) Find the perturbed frequencies $\nu(A)$ to lowest nontrivial order in ϵ, where A is the amplitude of the q motion.
(c) Find the relationships $\phi=\phi\left(\phi_{0}, J_{0}\right)$ and $J=J\left(\phi_{0}, J_{0}\right)$ to lowest nontrivial order in ϵ.
[2] Consider the Hamiltonian

$$
H(q, p)=\left(1+\epsilon \frac{q^{2}}{a^{2}}\right) \frac{p^{2}}{2 m}+\frac{1}{2} m \omega_{0}^{2} q^{2}
$$

where ε is small.
(a) Find the perturbed frequencies $\nu(J)$ to lowest nontrivial order in ϵ.
(b) Find the perturbed frequencies $\nu(A)$ to lowest nontrivial order in ϵ, where A is the amplitude of the q motion.
(c) Find the relationships $\phi=\phi\left(\phi_{0}, J_{0}\right)$ and $J=J\left(\phi_{0}, J_{0}\right)$ to lowest nontrivial order in ϵ.
[3] Consider the $n=2$ Hamiltonian $H(\boldsymbol{J}, \boldsymbol{\phi})=H_{0}(\boldsymbol{J})+\epsilon H_{1}(\boldsymbol{\phi})$, where

$$
\begin{aligned}
& H_{0}(\boldsymbol{J})=\Lambda J_{1}^{3 / 2}+\Omega J_{2} \\
& H_{1}(\boldsymbol{\phi})=\cos \phi_{1} \sum_{-\infty}^{\infty} V_{n} e^{i n \phi_{2}} .
\end{aligned}
$$

(a) Obtain an expression for $J_{1}(t)$ valid to first order in ϵ.
(b) Which tori are destroyed by the perturbation?
[4] Is the following four-dimensional map canonical?

$$
\begin{aligned}
x_{n+1} & =2 \alpha x_{n}-\gamma x_{n}^{2}-p_{n}+X_{n}^{2} \\
p_{n+1} & =x_{n} \\
X_{n+1} & =2 \beta X_{n}-P_{n}+2 x_{n} X_{n} \\
P_{n+1} & =X_{n} .
\end{aligned}
$$

