PHYSICS 200B : CLASSICAL MECHANICS
 SOLUTION SET \#1

[1] Evaluate all cases of $\left\{A_{i}, A_{j}\right\}$, where

$$
\begin{array}{ll}
A_{1}=\frac{1}{4}\left(x^{2}+p_{x}^{2}-y^{2}-p_{y}^{2}\right) & A_{3}=\frac{1}{2}\left(x p_{y}-y p_{x}\right) \\
A_{2}=\frac{1}{2}\left(x y+p_{x} p_{y}\right) & A_{4}=x^{2}+y^{2}+p_{x}^{2}+p_{y}^{2} .
\end{array}
$$

Solution : Recall

$$
\{A, B\}=\sum_{\sigma=1}^{n}\left(\frac{\partial A}{\partial q_{\sigma}} \frac{\partial B}{\partial p_{\sigma}}-\frac{\partial B}{\partial q_{\sigma}} \frac{\partial A}{\partial p_{\sigma}}\right) .
$$

Using

$$
\begin{array}{llll}
\frac{\partial A_{1}}{\partial x}=\frac{1}{2} x & \frac{\partial A_{1}}{\partial y}=-\frac{1}{2} y & \frac{\partial A_{1}}{\partial p_{x}}=\frac{1}{2} p_{x} & \frac{\partial A_{1}}{\partial p_{y}}=-\frac{1}{2} p_{y} \\
\frac{\partial A_{2}}{\partial x}=\frac{1}{2} y & \frac{\partial A_{2}}{\partial y}=\frac{1}{2} x & \frac{\partial A_{2}}{\partial p_{x}}=\frac{1}{2} p_{y} & \frac{\partial A_{2}}{\partial p_{y}}=\frac{1}{2} p_{x} \\
\frac{\partial A_{3}}{\partial x}=\frac{1}{2} p_{y} & \frac{\partial A_{3}}{\partial y}=-\frac{1}{2} p_{x} & \frac{\partial A_{3}}{\partial p_{x}}=-\frac{1}{2} y & \frac{\partial A_{3}}{\partial p_{y}}=\frac{1}{2} x \\
\frac{\partial A_{4}}{\partial x}=2 x & \frac{\partial A_{4}}{\partial y}=2 y & \frac{\partial A_{4}}{\partial p_{x}}=2 p_{x} & \frac{\partial A_{4}}{\partial p_{y}}=2 p_{y},
\end{array}
$$

we obtain

$$
\begin{aligned}
& \left\{A_{i}, A_{j}\right\}=\varepsilon_{i j k} A_{k} \\
& \left\{A_{i}, A_{4}\right\}=0,
\end{aligned}
$$

where i, j, and k are elements of $\{1,2,3\}$, and $\varepsilon_{i j k}$ is the completely antisymmetric tensor of rank 3 , with $\varepsilon_{123}=+1$.
[2] Determine the generating function $F_{3}(p, Q)$ which produces the same canonical transformation as the generating function $F_{2}(q, P)=q^{2} \exp (P)$.

Solution : We have

$$
\begin{aligned}
F_{2}(q, P) & =q^{2} \exp (P) \Rightarrow \\
p & =\frac{\partial F_{2}}{\partial q}=2 q \exp (P) \quad, \quad Q=\frac{\partial F_{2}}{\partial P}=q^{2} \exp (P) .
\end{aligned}
$$

The generator $F_{3}(p, Q)$ is given by

$$
F_{3}(p, Q)=F_{2}(q, P)-q p-Q P .
$$

To represent F_{3} in terms of its proper arguments p and Q, we must find $q=q(p, Q)$ and $P=P(p, Q)$, which are easily obtained. We first eliminate $\exp (P)$ to obtain $q=2 Q / p$. Then we eliminate q, yielding $p^{2}=4 Q \exp (P)$, or $P=\ln \left(p^{2} / 4 Q\right)$. Thus,

$$
\begin{aligned}
F_{3}(p, Q) & =q^{2} \exp (P)-q p-Q P \\
& =\frac{4 Q^{2}}{p^{2}} \cdot \frac{p^{2}}{4 Q}-\frac{2 Q}{p} \cdot p-Q \cdot \ln \left(p^{2} / 4 Q\right) \\
& =-Q-Q \ln \left(p^{2} / 4 Q\right)
\end{aligned}
$$

One can now check explicitly that $F_{3}(p, Q)$ generates the same transformation:

$$
q=-\frac{\partial F_{3}}{\partial p}=\frac{2 Q}{p} \quad, \quad P=-\frac{\partial F_{3}}{\partial Q}=\ln \left(p^{2} / 4 Q\right)
$$

[3] Show explicitly that the canonical transformation generated by an arbitrary $F_{1}(q, Q, t)$ preserves the symplectic structure of Hamilton's equations. That is, show that

$$
M_{a j} \equiv \frac{\partial \Xi_{a}}{\partial \xi_{j}}
$$

is symplectic. Hint : Start by writing $p_{\sigma}=\frac{\partial F_{1}}{\partial q_{\sigma}}$ and $P_{\sigma}=-\frac{\partial F_{1}}{\partial Q_{\sigma}}$, and then evaluate the differentials $d p_{\sigma}$ and $d P_{\sigma}$.

Solution :

From

$$
p_{\sigma}=\frac{\partial F_{1}}{\partial q_{\sigma}} \quad, \quad P_{\sigma}=-\frac{\partial F_{1}}{\partial Q_{\sigma}}
$$

we take the differential of p_{σ} and P_{σ} to arrive at

$$
\begin{aligned}
d p_{\sigma} & =\frac{\partial^{2} F_{1}}{\partial q_{\sigma} \partial q_{\sigma^{\prime}}} d q_{\sigma^{\prime}}+\frac{\partial^{2} F_{1}}{\partial q_{\sigma} \partial Q_{\sigma^{\prime}}} d Q_{\sigma^{\prime}}+\frac{\partial^{2} F_{1}}{\partial q_{\sigma} \partial t} d t \\
& \equiv A_{\sigma \sigma^{\prime}} d q_{\sigma^{\prime}}+C_{\sigma \sigma^{\prime}} d Q_{\sigma^{\prime}}+u_{\sigma} d t
\end{aligned}
$$

and

$$
\begin{aligned}
d P_{\sigma} & =-\frac{\partial^{2} F_{1}}{\partial q_{\sigma^{\prime}} \partial Q_{\sigma^{\prime}}} d q_{\sigma^{\prime}}-\frac{\partial^{2} F_{1}}{\partial Q_{\sigma} \partial Q_{\sigma^{\prime}}} d Q_{\sigma^{\prime}}+\frac{\partial^{2} F_{1}}{\partial Q_{\sigma} \partial t} d t \\
& \equiv-C_{\sigma \sigma^{\prime}}^{\mathrm{t}} d q_{\sigma^{\prime}}-B_{\sigma \sigma^{\prime}} d Q_{\sigma^{\prime}}-v_{\sigma} d t
\end{aligned}
$$

with

$$
A_{\sigma \sigma^{\prime}}=\frac{\partial^{2} F_{1}}{\partial q_{\sigma} \partial q_{\sigma^{\prime}}} \quad, \quad B_{\sigma \sigma^{\prime}}=\frac{\partial^{2} F_{1}}{\partial Q_{\sigma} \partial Q_{\sigma^{\prime}}} \quad, \quad C_{\sigma \sigma^{\prime}}=\frac{\partial^{2} F_{1}}{\partial q_{\sigma} \partial Q_{\sigma^{\prime}}}
$$

and

$$
u_{\sigma}=\frac{\partial^{2} F_{1}}{\partial q_{\sigma} \partial t} \quad, \quad v_{\sigma}=\frac{\partial^{2} F_{1}}{\partial Q_{\sigma} \partial t}
$$

Putting the $d Q$ and $d P$ terms on the LHS of the equations, and suppressing indices, we have

$$
\left(\begin{array}{ll}
B & 1 \\
C & 0
\end{array}\right)\binom{d Q}{d P}=\left(\begin{array}{ll}
-C^{\mathrm{t}} & 0 \\
-A & 1
\end{array}\right)\binom{d q}{d p}-\binom{u}{v} d t .
$$

Thus, assuming C is invertible,

$$
M_{a j}=\frac{\partial \Xi_{a}}{\partial \xi_{j}}=\left(\begin{array}{ll}
B & 1 \\
C & 0
\end{array}\right)^{-1}\left(\begin{array}{cc}
-C^{\mathrm{t}} & 0 \\
-A & 1
\end{array}\right),
$$

from which we obtain

$$
\operatorname{det}(M)=\left[(-1)^{n} \operatorname{det}(C)\right]^{-1} \cdot(-1)^{n} \operatorname{det}\left(C^{\mathrm{t}}\right)=1 .
$$

We must however show more than $\operatorname{det}(M)=1$. We must show that M is symplectic, i.e. $M^{\mathrm{t}} J M=1$, where $J=\left(\begin{array}{cc}0 & \mathbb{I} \\ -\mathbb{I} & 0\end{array}\right)$. To this end, we write

$$
M=\left(\begin{array}{cc}
-C^{-1} A & C^{-1} \\
B C^{-1} A-C^{\mathrm{t}} & -B C^{-1}
\end{array}\right),
$$

which follows from writing $d Q=-C^{-1} A d q+C^{-1} d p$ and then substituting this into $d P=$ $-C^{\mathrm{t}} d q-B d Q$. We have here set $d t=0$ since we are interested only in how changes in (q, p) affect (Q, P). Now $A=A^{\mathrm{t}}$ and $B=B^{\mathrm{t}}$ are explicitly symmetric, hence

$$
M^{\mathrm{t}}=\left(\begin{array}{cc}
-A C^{\mathrm{t}^{-1}} & A C^{\mathrm{t}^{-1}} B-C \\
C^{\mathrm{t}-1} & -C^{\mathrm{t}-1} B
\end{array}\right) .
$$

Clearly

$$
J M=\left(\begin{array}{cc}
B C^{-1} A-C^{\mathrm{t}} & -B C^{-1} \\
C^{-1} A & -C^{-1}
\end{array}\right)
$$

It is then a simple matter to verify

$$
M^{\mathrm{t}} J M=J
$$

[4] Consider the small oscillations of an anharmonic oscillator with Hamiltonian

$$
H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} q^{2}+\alpha q^{3}+\beta q p^{2}
$$

under the assumptions $\alpha q \ll m \omega^{2}$ and $\beta q \ll \frac{1}{m}$.
(a) Working with the generating function

$$
F_{2}(q, P)=q P+a q^{2} P+b P^{3},
$$

find the parameters a and b such that the new Hamiltonian $\tilde{H}(Q, P)$ does not contain any anharmonic terms up to third order (i.e. no terms of order Q^{3} nor of order $Q P^{2}$).
(b) Determine $q(t)$.
(a) We have

$$
\begin{aligned}
p & =\frac{\partial F_{2}}{\partial q}=P+2 a q P \\
Q & =\frac{\partial F_{2}}{\partial P}=q+a q^{2}+3 b P^{2}
\end{aligned}
$$

We invert the latter equation to obtain $q(Q, P)$, then substitute into the former equation to get $p(Q, P)$:

$$
\begin{aligned}
& q=Q-a Q^{2}-3 b P^{2}+\ldots \\
& p=P+2 a Q P+\ldots
\end{aligned}
$$

We now write the Hamiltonian in terms of Q and P :

$$
\tilde{H}(Q, P)=\frac{P^{2}}{2 m}+\frac{1}{2} m \omega^{2} Q^{2}+\left(\alpha-m \omega^{2} a\right) Q^{3}+\left(\beta+\frac{2 a}{m}-3 m \omega^{2} b\right) Q P^{2}+\ldots .
$$

Setting the coefficients of the cubic terms to zero, and solving for a and b,

$$
a=\frac{\alpha}{m \omega^{2}} \quad, \quad b=\frac{2 \alpha}{3 m^{3} \omega^{4}}+\frac{\beta}{3 m \omega^{2}} .
$$

With these choices for a and b, the transformed Hamiltonian becomes

$$
\tilde{H}(Q, P)=\frac{P^{2}}{2 m}+\frac{1}{2} m \omega^{2} Q^{2}+\mathcal{O}\left(Q^{4}, Q^{3} P, Q^{2} P^{2}, Q P^{3}, P^{4}\right)
$$

(b) The solution to Hamilton's equations for Q and P is now

$$
Q(t)=A \cos (\omega t+\delta) \quad, \quad P=-m \omega A \sin (\omega t+\delta) .
$$

We substitute these expressions into the earlier result,

$$
\begin{equation*}
q=Q-a Q^{2}-3 b P^{2}+\ldots \tag{1}
\end{equation*}
$$

to obtain

$$
q(t)=A \cos \theta+\left(\frac{3 \alpha}{m \omega^{2}}+m \beta\right) \cdot \frac{1}{2} A^{2} \cos (2 \theta)-\left(\frac{\alpha}{m \omega^{2}}+m \beta\right) \cdot \frac{1}{2} A^{2}+\ldots
$$

with $\theta=\omega t+\delta$. Note that the center of the oscillation has shifted to the left by an amount proportional to A^{2}. This is because the original Hamiltonian $H(q, p)$ is no longer symmetric under the parity operation $q \rightarrow-q$.
[5] A particle of mass m moves in one dimension subject to the potential

$$
U(x)=\frac{k}{\sin ^{2}(x / a)} .
$$

(a) Obtain an integral expression for Hamilton's characteristic function.
(b) Under what conditions may action-angle variables be used?
(c) Assuming that action-angle variables are permissible, determine the frequency of oscillation by the action-angle method.
(d) Check your result for the oscillation frequency in the limit of small oscillations.

Solution :

(a) We must solve

$$
\frac{1}{2 m}\left(\frac{d W}{d x}\right)^{2}+\frac{k}{\sin ^{2}(x / a)}=Q
$$

Note that $Q=E$, the total energy, which is conserved. The motion is therefore between the turning points

$$
x_{-}(E)=n \pi a+a \sin ^{-1} \sqrt{k / E} \quad, \quad x_{+}(E)=(n+1) \pi a-a \sin ^{-1} \sqrt{k / E},
$$

where n is any integer. We may then write

$$
W(x, E)=\sqrt{2 m} \int_{x_{-}(E)}^{x} d x^{\prime} \sqrt{E-\frac{k}{\sin ^{2}\left(x^{\prime} / a\right)}} .
$$

The lower limit may be left as unspecified; this only changes the result by a constant.
(b) We need that the motion is bounded. In our case, $x_{-}(E) \leq x \leq x_{+}(E)$.
(c) We have

$$
\begin{aligned}
J & =\frac{1}{2 \pi} \sqrt{2 m} \oint d x \sqrt{E-\frac{k}{\sin ^{2}\left(x^{\prime} / a\right)}} \\
& =\frac{a}{2 \pi} \sqrt{2 m E} \int_{0}^{2 \pi} d u \frac{1-\cos u}{\frac{E+k}{E-k}-\cos u},
\end{aligned}
$$

where we have substituted

$$
\cos (x / a)=\sqrt{1-\frac{k}{E}} \cos \left(\frac{1}{2} u\right) .
$$

Mathematical Interlude: We are interested in evaluating

$$
\int_{0}^{2 \pi} d u \frac{1-\cos u}{b-\cos u}=2 \pi+(1-b) \int_{0}^{2 \pi} \frac{d u}{b-\cos u},
$$

where $b>1$. We do this by the method of contour integration. Consider the integral

$$
\begin{aligned}
\mathcal{I} & =\int_{0}^{2 \pi} \frac{d u}{2 \pi} \frac{1}{b-\cos u}=\oint_{|z|=1} \frac{d z}{2 \pi i z} \frac{2}{2 b-z-z^{-1}} \\
& =-\oint_{|z|=1} \frac{d z}{2 \pi i} \frac{2}{z^{2}-2 b z+1}=-\oint_{|z|=1} \frac{d z}{2 \pi i} \frac{2}{\left(z-z_{+}\right)\left(z-z_{-}\right)},
\end{aligned}
$$

where

$$
z_{ \pm}=b \pm \sqrt{b^{2}-1}
$$

Note above we have used $z=e^{i u}, d u=d z / i z$ in obtaining the contour integral. The root z_{-}lies within the circle $|z|=1 ; z_{+}$lies outside; note that $z_{+} z_{-}=1$. We therefore have

$$
\mathcal{I}=-\frac{2}{z_{-}-z_{+}}=\frac{1}{\sqrt{b^{2}-1}} .
$$

Using the results from our pleasant interlude, with $b=(E+k) /(E-k)$, we find

$$
J=\sqrt{2 m} a(\sqrt{E}-\sqrt{k}) \quad, \quad E=\left(\frac{J}{\sqrt{2 m} a}+\sqrt{k}\right)^{2} .
$$

Note that the minimum energy is $E_{\min }=k$. The oscillation frequency is given by

$$
\nu(J)=\frac{\partial E}{\partial J}=\frac{J}{m a^{2}}+\sqrt{\frac{2 k}{m a^{2}}}=\sqrt{\frac{2 E}{m a^{2}}} .
$$

(d) With $U(x)=k / \sin ^{2}(x / a)$ we have

$$
\begin{aligned}
U^{\prime}(x) & =-\frac{2 k}{a} \cdot \frac{\cos (x / a)}{\sin ^{3}(x / a)} \\
U^{\prime \prime}(x) & =\frac{2 k}{a^{2}} \cdot \frac{\sin ^{4}(x / a)+3 \sin ^{2}(x / a) \cos ^{2}(x / a)}{\sin ^{6}(x / a)}
\end{aligned}
$$

Setting $U^{\prime}\left(x^{*}\right)=0$ we obtain $x^{*}=\left(n+\frac{1}{2}\right) \pi a$, where $n \in \mathbb{Z}$. At any of these equilibria, $U^{\prime \prime}\left(x^{*}\right)=2 k / a^{2}$. Therefore, the frequency of small oscillations is

$$
\omega_{\text {s.o. }}=\sqrt{\frac{U^{\prime \prime}\left(x^{*}\right)}{m}}=\sqrt{\frac{2 k}{m a^{2}}},
$$

which agrees with the result from part (c).

