PHYSICS 200B : CLASSICAL MECHANICS PROBLEM SET #1

[1] Evaluate all cases of $\{A_i, A_j\}$, where

$$A_{1} = \frac{1}{4} \left(x^{2} + p_{x}^{2} - y^{2} - p_{y}^{2} \right) \qquad A_{3} = \frac{1}{2} \left(x p_{y} - y p_{x} \right)$$
$$A_{2} = \frac{1}{2} \left(x y + p_{x} p_{y} \right) \qquad A_{4} = x^{2} + y^{2} + p_{x}^{2} + p_{y}^{2} + p_{$$

[2] Determine the generating function $F_3(p, Q)$ which produces the same canonical transformation as the generating function $F_2(q, P) = q^2 \exp(P)$.

[3] Show explicitly that the canonical transformation generated by an arbitrary $F_1(q, Q, t)$ preserves the symplectic structure of Hamilton's equations. That is, show that

$$M_{aj}\equiv \frac{\partial \Xi_a}{\partial \xi_j}$$

is symplectic. Hint : Start by writing $p_{\sigma} = \frac{\partial F_1}{\partial q_{\sigma}}$ and $P_{\sigma} = -\frac{\partial F_1}{\partial Q_{\sigma}}$, and then evaluate the differentials dp_{σ} and dP_{σ} .

[4] Consider the small oscillations of an anharmonic oscillator with Hamiltonian

$$H = \frac{p^2}{2m} + \frac{1}{2}m\,\omega^2\,q^2 + \alpha\,q^3 + \beta\,q\,p^2$$

under the assumptions $\alpha q \ll m \omega^2$ and $\beta q \ll \frac{1}{m}$.

(a) Working with the generating function

$$F_2(q, P) = qP + a q^2 P + b P^3$$

find the parameters a and b such that the new Hamiltonian $\tilde{H}(Q, P)$ does not contain any anharmonic terms up to third order (*i.e.* no terms of order Q^3 nor of order QP^2).

(b) Determine q(t).

[5] A particle of mass m moves in one dimension subject to the potential

$$U(x) = \frac{k}{\sin^2(x/a)} \; .$$

- (a) Obtain an integral expression for Hamilton's characteristic function.
- (b) Under what conditions may action-angle variables be used?

- (c) Assuming that action-angle variables are permissible, determine the frequency of oscillation by the action-angle method.
- (d) Check your result for the oscillation frequency in the limit of small oscillations.