PHYSICS 200B : CLASSICAL MECHANICS FINAL EXAMINATION

(1) Consider the nonlinear oscillator described by the Hamiltonian

$$H(q,p) = \frac{p^2}{2m} + \frac{1}{2}kq^2 + \frac{1}{4}\epsilon aq^4 + \frac{1}{4}\epsilon bp^4 \quad ,$$

where ε is small.

- (a) Find the perturbed frequencies $\nu(J)$ to lowest nontrivial order in ϵ .
- (b) Find the perturbed frequencies $\nu(A)$ to lowest nontrivial order in ϵ , where A is the amplitude of the q motion.
- (c) Find the relationships $\phi = \phi(\phi_0, J_0)$ and $J = J(\phi_0, J_0)$ to lowest nontrivial order in ϵ .

Solution:

With $k \equiv m\nu_0^2$, recall the AA variables

$$\phi_0 = \tan^{-1} \left(\frac{m\nu_0 q}{p} \right) \qquad , \qquad J_0 = \frac{p^2}{2m\nu_0} + \frac{1}{2}m\nu_0 q^2$$

Thus, $q=(2J_0/m\nu_0)^{1/2}\sin\phi_0$ and $p=(2m\nu_0J_0)^{1/2}\cos\phi_0\,,$ so the Hamiltonian is

$$\widetilde{H}(\phi_0,J_0)=\nu_0J_0+\epsilon\widetilde{H}_1(\phi_0,J_0)\quad,$$

where

$$\widetilde{H}_1(\phi_0, J_0) = \frac{a J_0^2}{m^2 \nu_0^2} \sin^4 \phi_0 + b \, m^2 \nu_0^2 J_0^2 \cos^4 \phi_0 \quad .$$

(a) Averaging over ϕ_0 , we have $\langle \sin^4 \phi_0 \rangle = \langle \cos^4 \phi_0 \rangle = \frac{3}{8}$, so

$$E_1(J) = \left\langle \widetilde{H}_1(\phi_0, J) \right\rangle = \left(\frac{a}{mk} + bmk\right) \times \frac{3}{8}J^2 \quad .$$

The perturbed frequencies are $\nu(J) = \nu_0 + \epsilon \nu_1$ where $\nu_1 = \frac{\partial E_1}{\partial J}$. Thus,

$$\nu(J) = \sqrt{\frac{k}{m}} + \left(\frac{a}{mk} + bmk\right) \times \frac{3}{4}\epsilon J \quad .$$

(b) We only need J to zeroth order in ϵ . Setting p = 0 and q = A gives $J = \frac{1}{2}m\nu_0 A^2 + \mathcal{O}(\epsilon)$, in which case

$$\nu(A) = \sqrt{\frac{k}{m}} + \left(\frac{a}{mk} + bmk\right) \times \frac{3}{8} \epsilon m \nu_0 A^2 \quad .$$

(c) Recall the desired type-II CT is generated by $S(\phi_0, J) = \phi_0 J + \epsilon S_1(\phi_0, J) + \dots$, with

$$\frac{\partial S_1}{\partial \phi_0} = \frac{\left< \tilde{H}_1 \right> - \tilde{H}_1}{\nu_0(J)}$$

Thus,

$$\frac{\partial S_1}{\partial \phi_0} = \frac{aJ^2}{m^2\nu_0^3} \left(\frac{3}{8} - \sin^4\phi_0\right) + bm^2\nu_0 J\left(\frac{3}{8} - \cos^4\phi_0\right)$$

Integrating, we have

$$S_1(\phi_0, J) = \frac{aJ^2}{m^2\nu_0^3} \Big(\frac{1}{4}\sin(2\phi_0) - \frac{1}{32}\sin(4\phi_0)\Big) - bm^2\nu_0 J^2\Big(\frac{1}{4}\sin(2\phi_0) + \frac{1}{32}\sin(4\phi_0)\Big)$$

The constant may be set to zero as it leads to a constant shift of the angle variable ϕ . Thus, we have

$$J_0 = J + \epsilon \frac{\partial S_1}{\partial \phi_0} + \mathcal{O}(\epsilon^2)$$

= $J + \left(\frac{a - bm^4 \nu_0^4}{2m^2 \nu_0^3}\right) \epsilon J^2 \cos(2\phi_0) - \left(\frac{a + bm^2 \nu_0^4}{8m^2 \nu_0^3}\right) \epsilon J^2 \cos(4\phi_0) + \mathcal{O}(\epsilon^2) \quad .$

Thus,

$$J = J_0 - \left(\frac{a - bm^4 \nu_0^4}{2m^2 \nu_0^3}\right) \epsilon J_0^2 \cos(2\phi_0) + \left(\frac{a + bm^2 \nu_0^4}{8m^2 \nu_0^3}\right) \epsilon J_0^2 \cos(4\phi_0) + \mathcal{O}(\epsilon^2) \quad .$$

We then have

$$\begin{split} \phi &= \phi_0 + \epsilon \frac{\partial S_1}{\partial J} + \mathcal{O}(\epsilon^2) \\ &= \phi_0 + \left(\frac{a - bm^4\nu_0^4}{2m^2\nu_0^3}\right) \epsilon J_0 \sin(2\phi_0) - \left(\frac{a + bm^2\nu_0^4}{16m^2\nu_0^3}\right) \epsilon J_0 \sin(4\phi_0) + \mathcal{O}(\epsilon^2) \quad . \end{split}$$

(2) Consider the forced modified van der Pol equation,

$$\ddot{x} + \epsilon (x^4 - 1) \, \dot{x} + x = \epsilon f_0 \cos(t + \epsilon \nu t) \quad ,$$

where ϵ is small. Carry out the multiple scale analysis to order ϵ . Following §3.3.2 in the Lecture Notes, find and analyze the equation which relates the amplitude A, detuning ν , and force amplitude f_0 for entrained oscillations. Perform the requisite linear stability analysis and make a plot similar to that in Fig. 3.4 of the Lecture Notes. Is there a region of entrained oscillations which exhibits hysteresis as the detuning parameter is varied? If so, find the corresponding range of f_0 over which this occurs.

Bonus: Use Mathematica or Matlab to integrate the equation, showing examples of entrained and heterodyne behavior, as in Fig. 3.6 (1000 Quatloos extra credit). Solution:

In the multiple scale analysis (MSA), we define a hierarchy of time scales $T_n = \epsilon^n t$, and we expand $x(t) = \sum_{n=0}^{\infty} \epsilon^n x_n(T_0, T_1, \ldots)$. The general forced nonlinear oscillator equation is written

$$\ddot{x} + x = \epsilon h(x, \dot{x}) + \epsilon f_0 \cos(t + \epsilon \nu t)$$

where $\epsilon \nu$ is the detuning. We write $\frac{d}{dt} = \sum_{k=0}^{\infty} \epsilon^k \frac{\partial}{\partial T_k}$ and derive a hierarchy order by order in ϵ . As shown in §3.3 of the Lecture Notes, to lowest order we have

$$\left(\frac{\partial^2}{\partial T_0^2} + 1\right) x_0 = 0 \qquad \Rightarrow \qquad x_0 = A\cos(T_0 + \phi)$$

where the amplitude $A = A(T_1, T_2, ...)$ and phase $\phi = \phi(T_1, T_2, ...)$ are independent of T_0 . At the next level of the hierarchy, we define $\theta = T_0 + \phi(T_1)$ and $\psi(T_1) \equiv \phi(T_1) - \nu T_1$, where dependences on the scales $\{T_1, T_3, ...\}$ are implicit. At order ϵ^1 , we have

$$\left(\frac{\partial^2}{\partial\theta^2} + 1\right)x_1 = 2\frac{\partial A}{\partial T_1}\sin\theta + 2A\frac{\partial\phi}{\partial T_1}\cos\theta + h(A\cos\theta, -A\sin\theta) + f_0\cos(\theta - \psi) \quad .$$

We Fourier transform the function $h(A\cos\theta, -A\sin\theta)$, writing

$$h(A\cos\theta, -A\sin\theta) = \sum_{k=0}^{\infty} \left[\alpha_k(A)\sin(k\theta) + \beta_k(A)\cos(k\theta) \right] \quad .$$

We then have

$$\left(\frac{\partial^2}{\partial\theta^2} + 1\right) x_1 = \sum_{k \neq 1} \left[\alpha_k(A) \sin(k\theta) + \beta_k(A) \cos(k\theta) \right] \quad ,$$

where the secular forcing k = 1 terms are eliminated by the requirements

$$\begin{split} \frac{dA}{dT_1} &= -\frac{1}{2}\alpha_1(A) - \frac{1}{2}f_0\sin\psi \\ \frac{d\psi}{dT_1} &= -\nu - \frac{\beta_1(A)}{2A} - \frac{f_0}{2A}\cos\psi \quad, \end{split}$$

which may be written as coupled ODEs since the time scales $\{T_2, T_3, \ldots\}$ do not appear. At any fixed point, then, one must have

$$\left[\alpha_1(A)\right]^2 + \left[2\nu A + \beta_1(A)\right]^2 = f_0^2 \quad .$$

The linearized map in the vicinity of the fixed point (A^*, ψ^*) is given by

$$\frac{d}{dT_1} \begin{pmatrix} \delta A \\ \delta \psi \end{pmatrix} = \overbrace{\begin{pmatrix} -\frac{1}{2}\alpha'_1(A) & \nu A + \frac{1}{2}\beta_1(A) \\ \\ -\frac{\beta'_1(A)}{2A} - \frac{\nu}{A} & -\frac{\alpha_1(A)}{2A} \end{pmatrix}}^M \begin{pmatrix} \delta A \\ \delta \psi \end{pmatrix} \quad .$$

In our case, $h(x, \dot{x}) = (1 - x^4) \dot{x}$, and therefore

$$h(A\cos\theta, -A\sin\theta) = (1 - A^4\cos^4\theta)(-A\sin\theta)$$
$$= \left(\frac{A^5}{8} - A\right)\sin\theta + \frac{3}{16}A^5\sin(3\theta) + \frac{1}{16}A^5\sin(5\theta) \quad .$$

Thus,

$$\alpha_1(A) = \frac{1}{8}A^5 - A$$
 , $\alpha_3(A) = \frac{3}{16}A^5$, $\alpha_5(A) = \frac{1}{16}A^5$

where all other $\alpha_k(A) = 0$ and all $\beta_k(A) = 0$. In particular, $\beta_1(A) = 0$, hence

$$G(y) \equiv \frac{1}{64}y^5 - \frac{1}{4}y^3 + (1+4\nu^2)y = f_0^2$$

where $y = A^2$; note that G(0) = 0. We must analyze the behavior of G(y) for $y \ge 0$. Taking the derivative,

$$G'(y) = \frac{5}{64}y^4 - \frac{3}{4}y^2 + (1+4\nu^2)$$

The roots G'(y) = 0 lie at $y = y_{\pm}$, where

$$y_{\pm}^2 = \frac{8}{5} \Big(3 \pm 2\sqrt{1 - 5\nu^2} \Big)$$
 .

Thus, when the argument of the square root is negative, there are no real solutions, which means G(y) is monotonically increasing and $G(y) = f_0^2$ has a unique solution. This occurs for $\nu^2 > \frac{1}{5}$.

For $\nu^2 < \frac{1}{5}$, there are two solutions $G'(y_{\pm}) = 0$ with $y_{\pm} > 0$ and another two solutions at $y = -y_{\pm}$, since G(y) is an odd function of y. Note that $G(y_-) > G(y_+)$. Thus, $G(y) = f_0^2$ has three solutions provided $f_0^2 \in [G(y_+), G(y_-)] \cap [0, \infty)$. One then finds this is equivalent to the condition

$$(3+2u)^{3/2}(1-u) < \sqrt{\frac{3125}{512}}f_0^2 < (3-2u)^{3/2}(1+u)$$
,

where $u = \sqrt{1 - 5\nu^2} \in [0, 1]$. Note that for $\nu^2 = \frac{1}{5}$ ther root at $f_0^2 = (2^9 \cdot 3^3 / 5^5)^{1/2} = 2.10325$ is a double root. However, we still must check whether these solutions are stable. To do this, we compute the eigenvalues of the matrix M, with

$$M = \frac{1}{16} \begin{pmatrix} 8 - 5A^4 & 16\nu A \\ -16\nu A^{-1} & 8 - A^4 \end{pmatrix} \quad .$$

The eigenvalues are $\lambda_{\pm} = \frac{1}{2}T \pm \sqrt{\frac{1}{4}T^2 - D}$, where

$$T = \operatorname{Tr}(M) = 1 - \frac{3}{8}y^2 \quad , \qquad D = \det M = \frac{5}{256}y^4 - \frac{3}{16}y^2 + \nu^2 + \frac{1}{4} = \frac{1}{4}G'(y) \quad .$$

The fixed point will be unstable if either of the eigenvalues has a positive real part. One possibility is a saddle point, which occurs for D < 0. This means G'(y) < 0, which means $y \in [y_-, y_+]$. Thus, when we have three solutions, the middle one is always unstable.

Figure 1: Fixed point solutions corresponding to entrained phases of the forced modified van der Pol oscillator. Thin dashed curves correspond to different values of f_0 .

The other possibility is T > 0, leading to an unstable spiral or unstable node. This is equivalent to $y^2 < \frac{8}{3}$. Since a global analysis for large A shows the flow is inward, we conclude that the coupled ODEs for A and ψ must have a stable limit cycle in the portion of the (ν, y) plane corresponding to an unstable node or unstable spiral, *i.e.* where $y < \sqrt{\frac{8}{3}}$ and G'(y) > 0. The line $y = \sqrt{\frac{8}{3}}$ intersects the curve D = 0 at $\nu = \frac{1}{3}$. Thus, the phase diagram resembles that of Fig. 3.4 in the Lecture Notes. To find the range of f_0^2 over which there is hysteretic jumping between stable branches over some interval $\nu \in [\nu_-, \nu_+]$, we set G(y) = G'(y) = 0 and eliminate y to obtain $f_0^2 = \sqrt{\frac{256}{3125}} (3 + 2u)^{3/2} (1 - u)$. We then evaluate $G(y) = f_0^2$, for the same value of ν , at the point where $\operatorname{Tr}(M) = 0$, *i.e.* $y = \sqrt{\frac{8}{3}}$, which yields $f_0^2 = \frac{4}{45}\sqrt{\frac{8}{3}} (14 - 9u^2)$. Eliminating f_0^2 , we arrive at the quintic equation

$$125 (14 - 9u^2)^2 = 972 (3 + 2u)^3 (1 - u)^2$$

The solution over the interval $u \in [0, 1]$ is u = 0.350851, which gives us $f_{0,\min}^2 = 1.87136$. Thus, hysteresis occurs for $f_0^2 \in [1.87136, 2.10325]$, *i.e.* $f_0 \in [1.3680, 1.4503]$. Note one can also have hysteresis between a stable entrained solution and a stable limit cycle as parameters are varied.

Figure 2: Entrained and heterodyne behavior of the forced modified van der Pol oscillator, with $\epsilon = 0.1$ and $\nu = 0.4$.

(3) Consider shock formation in the inviscid Burgers' equation, $c_t + c c_x = 0$. Let the function $c(\zeta) = c(x = \zeta, t = 0)$ be given by the triangular profile,

$$c(\zeta) = c_0 \left(\frac{a - |\zeta|}{a}\right) \Theta(a - |\zeta|)$$

- (a) Find the break time $t_{\rm\scriptscriptstyle B}.$
- (b) Implement the shock fitting protocol and find $\zeta_{-}(t)$, $\zeta_{+}(t)$, and $x_{s}(t)$.
- (c) Find the shock discontinuity $\Delta c(t)$ for $t > t_{\rm B}$.
- (d) Sketch c(x,t) vs. x for $t/t_{\rm B} = 0, \frac{1}{2}, 1, 2, \text{ and } 4$. Show that for $t \ge t_{\rm B}, c(x,t)$ vs. x has

the form of a right triangle whose area is given by $\int_{-a}^{a} d\zeta c(\zeta)$.

(e) Without shock fitting, sketch the characteristics in the (x, t) plane and highlight the region where they cross. Then sketch the characteristics after shock fitting. *Hint:* Your sketches should roughly resemble those in Fig. 4.13 of the Lecture Notes.

Solution:

(a) The break time is

$$t_{\rm B} = \min_{c'(\zeta) < 0} \left(-\frac{1}{c'(\zeta)} \right) \equiv -\frac{1}{c'(\zeta_{\rm B})} \ .$$

Thus, $t_{\rm B} = a/c_0$.

(b) We have two shock fitting equations:

$$x_{\rm s}=\zeta_-+c_-t=\zeta_++c_+t\quad,$$

where $c_{\pm} \equiv c(\zeta_{\pm})$, and

$$\frac{1}{2}(\zeta_{+} - \zeta_{-})(c_{+} + c_{-}) = \int_{\zeta_{-}}^{\zeta_{+}} d\zeta \ c(\zeta) \quad .$$

Clearly $\zeta_+ > a$ and therefore $c_+ = 0$. We also have $\zeta_- < 0$. The second of our shock fitting equations then gives

$$\zeta_{+} = \zeta_{-} + \frac{a}{a + \zeta_{-}} \left(a - 2\zeta_{-} - \frac{\zeta_{-}^{2}}{a} \right)$$

Figure 3: Left: Shock fitting requires the burgundy and green hatched areas to be equal. Right: Evolution of the initial profile at times $\tau = t/t_{\rm B} = 0$ (black), $\tau = \frac{1}{2}$ (blue), $\tau = 1$ (red), $\tau = 2$ (magenta), and $\tau = 4$ (green). The dashed line shows the shock discontinuity.

The first shock fitting equation gives $\zeta_+ - \zeta_- = c_- t$, and eliminating ζ_+ yields

$$c_0 t = \left(\frac{a}{a+\zeta_-}\right)^2 \left(a-2\zeta_--\frac{\zeta_-^2}{a}\right) \quad .$$

At this point it is convenient to define the dimensionless time $\tau \equiv c_0 t/a = t/t_{\rm B}$ as well as $q_{\pm} \equiv \zeta_{\pm}/a$. Note $q_{\rm s} = x_{\rm s}/a = q_{+}$ because $c_{+} = 0$. Solving, we obtain

$$q_{-}(\tau) = -1 + \sqrt{\frac{2}{1+\tau}}$$
, $q_{+}(\tau) = -1 + \sqrt{2(1+\tau)}$,

(c) The dimensionless velocity is $\bar{c} = c/c_0$. Note $\bar{c}_{\pm} = 1 - |q_{\pm}|$. The shock discontinuity is then

$$\Delta \bar{c}(\tau) = \sqrt{\frac{2}{1+\tau}} \quad ,$$

where $\tau \geq 1$. Note $\Delta \bar{c}(\tau = 1) = 1$, which is nongeneric, since the discontinuity usually grows from zero starting at the break time. The nongeneric nature here is due to the piecewise linear initial profile. Note also $\Delta \bar{c}(\tau) \propto \tau^{-1/2}$ as $\tau \to \infty$. See Fig. 3.

Figure 4: Top: Characteristics prior to shock fitting, showing intersection in the hatched region. Bottom: Characteristics with shock fitting. The shock trajectory is shown in red.

(d) For $t > t_{\rm B}$, the curve $\bar{c}(q,\tau)$ is a right triangle whose base is $1 + q_+(\tau)$ and height is $\Delta \bar{c}(\tau)$. Thus, the dimensionless area is

$$A(\tau > 1) = \frac{1}{2} (1 + q_{+}(\tau)) \Delta \bar{c}(\tau) = 1 = \int_{-1}^{1} dq (1 - |q|) ,$$

and so the area is preserved. For $\tau < 1$, we have $\bar{c}(q,\tau)$ is a triangle connecting the points (-1,0) to $(\tau,1)$ to (1,0), since the peak value moves with $\bar{c}_{\max} = 1$. The area is again

$$A(\tau < 1) = \frac{1}{2}(1+\tau) + \frac{1}{2}(1-\tau) = 1 \quad .$$

(e) See Fig. 4.