PHYSICS 200B : CLASSICAL MECHANICS FINAL EXAMINATION

(1) Consider the nonlinear oscillator described by the Hamiltonian

$$
H(q, p)=\frac{p^{2}}{2 m}+\frac{1}{2} k q^{2}+\frac{1}{4} \epsilon a q^{4}+\frac{1}{4} \epsilon b p^{4}
$$

where ε is small.
(a) Find the perturbed frequencies $\nu(J)$ to lowest nontrivial order in ϵ.
(b) Find the perturbed frequencies $\nu(A)$ to lowest nontrivial order in ϵ, where A is the amplitude of the q motion.
(c) Find the relationships $\phi=\phi\left(\phi_{0}, J_{0}\right)$ and $J=J\left(\phi_{0}, J_{0}\right)$ to lowest nontrivial order in ϵ.

Solution:

With $k \equiv m \nu_{0}^{2}$, recall the AA variables

$$
\phi_{0}=\tan ^{-1}\left(\frac{m \nu_{0} q}{p}\right) \quad, \quad J_{0}=\frac{p^{2}}{2 m \nu_{0}}+\frac{1}{2} m \nu_{0} q^{2}
$$

Thus, $q=\left(2 J_{0} / m \nu_{0}\right)^{1 / 2} \sin \phi_{0}$ and $p=\left(2 m \nu_{0} J_{0}\right)^{1 / 2} \cos \phi_{0}$, so the Hamiltonian is

$$
\widetilde{H}\left(\phi_{0}, J_{0}\right)=\nu_{0} J_{0}+\epsilon \widetilde{H}_{1}\left(\phi_{0}, J_{0}\right)
$$

where

$$
\widetilde{H}_{1}\left(\phi_{0}, J_{0}\right)=\frac{a J_{0}^{2}}{m^{2} \nu_{0}^{2}} \sin ^{4} \phi_{0}+b m^{2} \nu_{0}^{2} J_{0}^{2} \cos ^{4} \phi_{0}
$$

(a) Averaging over ϕ_{0}, we have $\left\langle\sin ^{4} \phi_{0}\right\rangle=\left\langle\cos ^{4} \phi_{0}\right\rangle=\frac{3}{8}$, so

$$
E_{1}(J)=\left\langle\widetilde{H}_{1}\left(\phi_{0}, J\right)\right\rangle=\left(\frac{a}{m k}+b m k\right) \times \frac{3}{8} J^{2} .
$$

The perturbed frequencies are $\nu(J)=\nu_{0}+\epsilon \nu_{1}$ where $\nu_{1}=\frac{\partial E_{1}}{\partial J}$. Thus,

$$
\nu(J)=\sqrt{\frac{k}{m}}+\left(\frac{a}{m k}+b m k\right) \times \frac{3}{4} \epsilon J
$$

(b) We only need J to zeroth order in ϵ. Setting $p=0$ and $q=A$ gives $J=\frac{1}{2} m \nu_{0} A^{2}+\mathcal{O}(\epsilon)$, in which case

$$
\nu(A)=\sqrt{\frac{k}{m}}+\left(\frac{a}{m k}+b m k\right) \times \frac{3}{8} \epsilon m \nu_{0} A^{2} .
$$

(c) Recall the desired type-II CT is generated by $S\left(\phi_{0}, J\right)=\phi_{0} J+\epsilon S_{1}\left(\phi_{0}, J\right)+\ldots$, with

$$
\frac{\partial S_{1}}{\partial \phi_{0}}=\frac{\left\langle\widetilde{H}_{1}\right\rangle-\widetilde{H}_{1}}{\nu_{0}(J)}
$$

Thus,

$$
\frac{\partial S_{1}}{\partial \phi_{0}}=\frac{a J^{2}}{m^{2} \nu_{0}^{3}}\left(\frac{3}{8}-\sin ^{4} \phi_{0}\right)+b m^{2} \nu_{0} J\left(\frac{3}{8}-\cos ^{4} \phi_{0}\right)
$$

Integrating, we have

$$
S_{1}\left(\phi_{0}, J\right)=\frac{a J^{2}}{m^{2} \nu_{0}^{3}}\left(\frac{1}{4} \sin \left(2 \phi_{0}\right)-\frac{1}{32} \sin \left(4 \phi_{0}\right)\right)-b m^{2} \nu_{0} J^{2}\left(\frac{1}{4} \sin \left(2 \phi_{0}\right)+\frac{1}{32} \sin \left(4 \phi_{0}\right)\right) .
$$

The constant may be set to zero as it leads to a constant shift of the angle variable ϕ. Thus, we have

$$
\begin{aligned}
J_{0} & =J+\epsilon \frac{\partial S_{1}}{\partial \phi_{0}}+\mathcal{O}\left(\epsilon^{2}\right) \\
& =J+\left(\frac{a-b m^{4} \nu_{0}^{4}}{2 m^{2} \nu_{0}^{3}}\right) \epsilon J^{2} \cos \left(2 \phi_{0}\right)-\left(\frac{a+b m^{2} \nu_{0}^{4}}{8 m^{2} \nu_{0}^{3}}\right) \epsilon J^{2} \cos \left(4 \phi_{0}\right)+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

Thus,

$$
J=J_{0}-\left(\frac{a-b m^{4} \nu_{0}^{4}}{2 m^{2} \nu_{0}^{3}}\right) \epsilon J_{0}^{2} \cos \left(2 \phi_{0}\right)+\left(\frac{a+b m^{2} \nu_{0}^{4}}{8 m^{2} \nu_{0}^{3}}\right) \epsilon J_{0}^{2} \cos \left(4 \phi_{0}\right)+\mathcal{O}\left(\epsilon^{2}\right)
$$

We then have

$$
\begin{aligned}
\phi & =\phi_{0}+\epsilon \frac{\partial S_{1}}{\partial J}+\mathcal{O}\left(\epsilon^{2}\right) \\
& =\phi_{0}+\left(\frac{a-b m^{4} \nu_{0}^{4}}{2 m^{2} \nu_{0}^{3}}\right) \epsilon J_{0} \sin \left(2 \phi_{0}\right)-\left(\frac{a+b m^{2} \nu_{0}^{4}}{16 m^{2} \nu_{0}^{3}}\right) \epsilon J_{0} \sin \left(4 \phi_{0}\right)+\mathcal{O}\left(\epsilon^{2}\right) .
\end{aligned}
$$

(2) Consider the forced modified van der Pol equation,

$$
\ddot{x}+\epsilon\left(x^{4}-1\right) \dot{x}+x=\epsilon f_{0} \cos (t+\epsilon \nu t)
$$

where ϵ is small. Carry out the multiple scale analysis to order ϵ. Following $\S 3.3 .2$ in the Lecture Notes, find and analyze the equation which relates the amplitude A, detuning ν, and force amplitude f_{0} for entrained oscillations. Perform the requisite linear stability analysis and make a plot similar to that in Fig. 3.4 of the Lecture Notes. Is there a region of entrained oscillations which exhibits hysteresis as the detuning parameter is varied? If so, find the corresponding range of f_{0} over which this occurs.

Bonus: Use Mathematica or Matlab to integrate the equation, showing examples of entrained and heterodyne behavior, as in Fig. 3.6 (1000 Quatloos extra credit).

Solution:

In the multiple scale analysis (MSA), we define a hierarchy of time scales $T_{n}=\epsilon^{n} t$, and we expand $x(t)=\sum_{n=0}^{\infty} \epsilon^{n} x_{n}\left(T_{0}, T_{1}, \ldots\right)$. The general forced nonlinear oscillator equation is written

$$
\ddot{x}+x=\epsilon h(x, \dot{x})+\epsilon f_{0} \cos (t+\epsilon \nu t),
$$

where $\epsilon \nu$ is the detuning. We write $\frac{d}{d t}=\sum_{k=0}^{\infty} \epsilon^{k} \frac{\partial}{\partial T_{k}}$ and derive a hierarchy order by order in ϵ. As shown in $\S 3.3$ of the Lecture Notes, to lowest order we have

$$
\left(\frac{\partial^{2}}{\partial T_{0}^{2}}+1\right) x_{0}=0 \quad \Rightarrow \quad x_{0}=A \cos \left(T_{0}+\phi\right)
$$

where the amplitude $A=A\left(T_{1}, T_{2}, \ldots\right)$ and phase $\phi=\phi\left(T_{1}, T_{2}, \ldots\right)$ are independent of T_{0}. At the next level of the hierarchy, we define $\theta=T_{0}+\phi\left(T_{1}\right)$ and $\psi\left(T_{1}\right) \equiv \phi\left(T_{1}\right)-\nu T_{1}$, where dependences on the scales $\left\{T_{1}, T_{3}, \ldots\right\}$ are implicit. At order ϵ^{1}, we have

$$
\left(\frac{\partial^{2}}{\partial \theta^{2}}+1\right) x_{1}=2 \frac{\partial A}{\partial T_{1}} \sin \theta+2 A \frac{\partial \phi}{\partial T_{1}} \cos \theta+h(A \cos \theta,-A \sin \theta)+f_{0} \cos (\theta-\psi) .
$$

We Fourier transform the function $h(A \cos \theta,-A \sin \theta)$, writing

$$
h(A \cos \theta,-A \sin \theta)=\sum_{k=0}^{\infty}\left[\alpha_{k}(A) \sin (k \theta)+\beta_{k}(A) \cos (k \theta)\right] .
$$

We then have

$$
\left(\frac{\partial^{2}}{\partial \theta^{2}}+1\right) x_{1}=\sum_{k \neq 1}\left[\alpha_{k}(A) \sin (k \theta)+\beta_{k}(A) \cos (k \theta)\right]
$$

where the secular forcing $k=1$ terms are eliminated by the requirements

$$
\begin{aligned}
& \frac{d A}{d T_{1}}=-\frac{1}{2} \alpha_{1}(A)-\frac{1}{2} f_{0} \sin \psi \\
& \frac{d \psi}{d T_{1}}=-\nu-\frac{\beta_{1}(A)}{2 A}-\frac{f_{0}}{2 A} \cos \psi
\end{aligned}
$$

which may be written as coupled ODEs since the time scales $\left\{T_{2}, T_{3}, \ldots\right\}$ do not appear. At any fixed point, then, one must have

$$
\left[\alpha_{1}(A)\right]^{2}+\left[2 \nu A+\beta_{1}(A)\right]^{2}=f_{0}^{2}
$$

The linearized map in the vicinity of the fixed point $\left(A^{*}, \psi^{*}\right)$ is given by

$$
\frac{d}{d T_{1}}\binom{\delta A}{\delta \psi}=\overbrace{\left(\begin{array}{cc}
-\frac{1}{2} \alpha_{1}^{\prime}(A) & \nu A+\frac{1}{2} \beta_{1}(A) \\
-\frac{\beta_{1}^{\prime}(A)}{2 A}-\frac{\nu}{A} & -\frac{\alpha_{1}(A)}{2 A}
\end{array}\right)}^{M}\binom{\delta A}{\delta \psi} .
$$

In our case, $h(x, \dot{x})=\left(1-x^{4}\right) \dot{x}$, and therefore

$$
\begin{aligned}
h(A \cos \theta,-A \sin \theta) & =\left(1-A^{4} \cos ^{4} \theta\right)(-A \sin \theta) \\
& =\left(\frac{A^{5}}{8}-A\right) \sin \theta+\frac{3}{16} A^{5} \sin (3 \theta)+\frac{1}{16} A^{5} \sin (5 \theta)
\end{aligned}
$$

Thus,

$$
\alpha_{1}(A)=\frac{1}{8} A^{5}-A \quad, \quad \alpha_{3}(A)=\frac{3}{16} A^{5} \quad, \quad \alpha_{5}(A)=\frac{1}{16} A^{5}
$$

where all other $\alpha_{k}(A)=0$ and all $\beta_{k}(A)=0$. In particular, $\beta_{1}(A)=0$, hence

$$
G(y) \equiv \frac{1}{64} y^{5}-\frac{1}{4} y^{3}+\left(1+4 \nu^{2}\right) y=f_{0}^{2}
$$

where $y=A^{2}$; note that $G(0)=0$. We must analyze the behavior of $G(y)$ for $y \geq 0$. Taking the derivative,

$$
G^{\prime}(y)=\frac{5}{64} y^{4}-\frac{3}{4} y^{2}+\left(1+4 \nu^{2}\right)
$$

The roots $G^{\prime}(y)=0$ lie at $y=y_{ \pm}$, where

$$
y_{ \pm}^{2}=\frac{8}{5}\left(3 \pm 2 \sqrt{1-5 \nu^{2}}\right)
$$

Thus, when the argument of the square root is negative, there are no real solutions, which means $G(y)$ is monotonically increasing and $G(y)=f_{0}^{2}$ has a unique solution. This occurs for $\nu^{2}>\frac{1}{5}$.

For $\nu^{2}<\frac{1}{5}$, there are two solutions $G^{\prime}\left(y_{ \pm}\right)=0$ with $y_{ \pm}>0$ and another two solutions at $y=-y_{ \pm}$, since $G(y)$ is an odd function of y. Note that $G\left(y_{-}\right)>G\left(y_{+}\right)$. Thus, $G(y)=f_{0}^{2}$ has three solutions provided $f_{0}^{2} \in\left[G\left(y_{+}\right), G\left(y_{-}\right)\right] \cap[0, \infty)$. One then finds this is equivalent to the condition

$$
(3+2 u)^{3 / 2}(1-u)<\sqrt{\frac{3125}{512}} f_{0}^{2}<(3-2 u)^{3 / 2}(1+u)
$$

where $u=\sqrt{1-5 \nu^{2}} \in[0,1]$. Note that for $\nu^{2}=\frac{1}{5}$ ther root at $f_{0}^{2}=\left(2^{9} \cdot 3^{3} / 5^{5}\right)^{1 / 2}=2.10325$ is a double root. However, we still must check whether these solutions are stable. To do this, we compute the eigenvalues of the matrix M, with

$$
M=\frac{1}{16}\left(\begin{array}{cc}
8-5 A^{4} & 16 \nu A \\
-16 \nu A^{-1} & 8-A^{4}
\end{array}\right)
$$

The eigenvalues are $\lambda_{ \pm}=\frac{1}{2} T \pm \sqrt{\frac{1}{4} T^{2}-D}$, where

$$
T=\operatorname{Tr}(M)=1-\frac{3}{8} y^{2} \quad, \quad D=\operatorname{det} M=\frac{5}{256} y^{4}-\frac{3}{16} y^{2}+\nu^{2}+\frac{1}{4}=\frac{1}{4} G^{\prime}(y)
$$

The fixed point will be unstable if either of the eigenvalues has a positive real part. One possibility is a saddle point, which occurs for $D<0$. This means $G^{\prime}(y)<0$, which means $y \in\left[y_{-}, y_{+}\right]$. Thus, when we have three solutions, the middle one is always unstable.

Figure 1: Fixed point solutions corresponding to entrained phases of the forced modified van der Pol oscillator. Thin dashed curves correspond to different values of f_{0}.

The other possibility is $T>0$, leading to an unstable spiral or unstable node. This is equivalent to $y^{2}<\frac{8}{3}$. Since a global analysis for large A shows the flow is inward, we conclude that the coupled ODEs for A and ψ must have a stable limit cycle in the portion of the (ν, y) plane corresponding to an unstable node or unstable spiral, i.e. where $y<\sqrt{\frac{8}{3}}$ and $G^{\prime}(y)>0$. The line $y=\sqrt{\frac{8}{3}}$ intersects the curve $D=0$ at $\nu=\frac{1}{3}$. Thus, the phase diagram resembles that of Fig. 3.4 in the Lecture Notes. To find the range of f_{0}^{2} over which there is hysteretic jumping between stable branches over some interval $\nu \in\left[\nu_{-}, \nu_{+}\right]$, we set $G(y)=G^{\prime}(y)=0$ and eliminate y to obtain $f_{0}^{2}=\sqrt{\frac{256}{3125}}(3+2 u)^{3 / 2}(1-u)$. We then evaluate $G(y)=f_{0}^{2}$, for the same value of ν, at the point where $\operatorname{Tr}(M)=0$, i.e. $y=\sqrt{\frac{8}{3}}$, which yields $f_{0}^{2}=\frac{4}{45} \sqrt{\frac{8}{3}}\left(14-9 u^{2}\right)$. Eliminating f_{0}^{2}, we arrive at the quintic equation

$$
125\left(14-9 u^{2}\right)^{2}=972(3+2 u)^{3}(1-u)^{2} .
$$

The solution over the interval $u \in[0,1]$ is $u=0.350851$, which gives us $f_{0, \text { min }}^{2}=1.87136$. Thus, hysteresis occurs for $f_{0}^{2} \in[1.87136,2.10325]$, i.e. $f_{0} \in[1.3680,1.4503]$. Note one can also have hysteresis between a stable entrained solution and a stable limit cycle as parameters are varied.

Figure 2: Entrained and heterodyne behavior of the forced modified van der Pol oscillator, with $\epsilon=0.1$ and $\nu=0.4$.
(3) Consider shock formation in the inviscid Burgers' equation, $c_{t}+c c_{x}=0$. Let the function $c(\zeta)=c(x=\zeta, t=0)$ be given by the triangular profile,

$$
c(\zeta)=c_{0}\left(\frac{a-|\zeta|}{a}\right) \Theta(a-|\zeta|) .
$$

(a) Find the break time t_{B}.
(b) Implement the shock fitting protocol and find $\zeta_{-}(t), \zeta_{+}(t)$, and $x_{\mathrm{s}}(t)$.
(c) Find the shock discontinuity $\Delta c(t)$ for $t>t_{\mathrm{B}}$.
(d) Sketch $c(x, t)$ vs. x for $t / t_{\mathrm{B}}=0, \frac{1}{2}, 1,2$, and 4 . Show that for $t \geq t_{\mathrm{B}}, c(x, t)$ vs. x has
the form of a right triangle whose area is given by $\int_{-a}^{a} d \zeta c(\zeta)$.
(e) Without shock fitting, sketch the characteristics in the (x, t) plane and highlight the region where they cross. Then sketch the characteristics after shock fitting. Hint: Your sketches should roughly resemble those in Fig. 4.13 of the Lecture Notes.

Solution:

(a) The break time is

$$
t_{\mathrm{B}}=\min _{c^{\prime}(\zeta)<0}\left(-\frac{1}{c^{\prime}(\zeta)}\right) \equiv-\frac{1}{c^{\prime}\left(\zeta_{\mathrm{B}}\right)} .
$$

Thus, $t_{\mathrm{B}}=a / c_{0}$.
(b) We have two shock fitting equations:

$$
x_{\mathrm{s}}=\zeta_{-}+c_{-} t=\zeta_{+}+c_{+} t
$$

where $c_{ \pm} \equiv c\left(\zeta_{ \pm}\right)$, and

$$
\frac{1}{2}\left(\zeta_{+}-\zeta_{-}\right)\left(c_{+}+c_{-}\right)=\int_{\zeta_{-}}^{\zeta_{+}} d \zeta c(\zeta)
$$

Clearly $\zeta_{+}>a$ and therefore $c_{+}=0$. We also have $\zeta_{-}<0$. The second of our shock fitting equations then gives

$$
\zeta_{+}=\zeta_{-}+\frac{a}{a+\zeta_{-}}\left(a-2 \zeta_{-}-\frac{\zeta_{-}^{2}}{a}\right) .
$$

Figure 3: Left: Shock fitting requires the burgundy and green hatched areas to be equal. Right: Evolution of the initial profile at times $\tau=t / t_{\mathrm{B}}=0$ (black), $\tau=\frac{1}{2}$ (blue), $\tau=1$ (red), $\tau=2$ (magenta), and $\tau=4$ (green). The dashed line shows the shock discontinuity.

The first shock fitting equation gives $\zeta_{+}-\zeta_{-}=c_{-} t$, and eliminating ζ_{+}yields

$$
c_{0} t=\left(\frac{a}{a+\zeta_{-}}\right)^{2}\left(a-2 \zeta_{-}-\frac{\zeta_{-}^{2}}{a}\right)
$$

At this point it is convenient to define the dimensionless time $\tau \equiv c_{0} t / a=t / t_{\mathrm{B}}$ as well as $q_{ \pm} \equiv \zeta_{ \pm} / a$. Note $q_{\mathrm{s}}=x_{\mathrm{s}} / a=q_{+}$because $c_{+}=0$. Solving, we obtain

$$
q_{-}(\tau)=-1+\sqrt{\frac{2}{1+\tau}} \quad, \quad q_{+}(\tau)=-1+\sqrt{2(1+\tau)}
$$

(c) The dimensionless velocity is $\bar{c}=c / c_{0}$. Note $\bar{c}_{ \pm}=1-\left|q_{ \pm}\right|$. The shock discontinuity is then

$$
\Delta \bar{c}(\tau)=\sqrt{\frac{2}{1+\tau}}
$$

where $\tau \geq 1$. Note $\Delta \bar{c}(\tau=1)=1$, which is nongeneric, since the discontinuity usually grows from zero starting at the break time. The nongeneric nature here is due to the piecewise linear initial profile. Note also $\Delta \bar{c}(\tau) \propto \tau^{-1 / 2}$ as $\tau \rightarrow \infty$. See Fig. 3 .

Figure 4: Top: Characteristics prior to shock fitting, showing intersection in the hatched region. Bottom: Characteristics with shock fitting. The shock trajectory is shown in red.
(d) For $t>t_{\mathrm{B}}$, the curve $\bar{c}(q, \tau)$ is a right triangle whose base is $1+q_{+}(\tau)$ and height is $\Delta \bar{c}(\tau)$. Thus, the dimensionless area is

$$
A(\tau>1)=\frac{1}{2}\left(1+q_{+}(\tau)\right) \Delta \bar{c}(\tau)=1=\int_{-1}^{1} d q(1-|q|)
$$

and so the area is preserved. For $\tau<1$, we have $\bar{c}(q, \tau)$ is a triangle connecting the points $(-1,0)$ to $(\tau, 1)$ to $(1,0)$, since the peak value moves with $\bar{c}_{\max }=1$. The area is again

$$
A(\tau<1)=\frac{1}{2}(1+\tau)+\frac{1}{2}(1-\tau)=1 .
$$

(e) See Fig. 4.

