and b without going into the details of the determination of the path. [The following derivation was first given by M. M. Gorden, *American Journal of Physics*, 23, 247 (May, 1955).]

In Figure 4–7, P_1 is the initial momentum of the α and P_2 the final momentum. It is evident from the vector diagram that the total change in momentum $\Delta P = P_2 - P_1$ is along the z' axis. The magnitude of P_1 and P_2 is MV. From the isosceles triangle
Rutherford scattering geometry. The nucleus is at O. The α particle has initial momentum MV parallel to line COA and final momentum of the same magnitude (by conservation of energy) parallel to line OBA. The distance b is called the impact parameter. The change in momentum is along the symmetry axis y'. The scattering angle θ can be related to the impact parameter by setting this change in momentum equal to the component of the impulse in the y' direction $\Delta P = \int F \cos \phi \, dt$.

formed by P_1, P_2, and ΔP, we find the magnitude of ΔP to be $\frac{1}{2} \Delta P/MV = \sin \frac{1}{2} \theta$, or $\Delta P = 2MV \sin \frac{1}{2} \theta$. We now write Newton's law for the α particle:

$$F = \frac{dP}{dt}$$

or

$$dP = F \, dt$$

The force F is given by Coulomb's law, $Kq_\alpha Q/r^2$, and is in the radial direction. Taking components along the y' axis and integrating, we have

$$\int (dP)_{y'} = \Delta P = \int F \cos \phi \, dt = \int F \cos \phi \frac{dt}{d\phi} \, d\phi \quad (4-5)$$

where we have changed the variable of integration from t to ϕ. We can write $dt/d\phi$ in terms of the angular momentum of the α about the origin. Since the force is central (i.e., it acts along the line joining the α and the origin), there is no torque about the origin, and the angular momentum is conserved. Initially, the angular momentum is MVb. At a later time, it is $Mr^2 \, d\phi/dt$. Thus conservation of angular momentum implies

$$Mr^2 \frac{d\phi}{dt} = MVb \quad (4-6)$$
Using Eq. (4-6) for $d\phi/dt$ in Eq. (4-5) and $Kq_{\alpha}Q/r^2$ for F, we have

$$\Delta P = \int \frac{Kq_{\alpha}Q}{r^2} \cos \phi \frac{r^2}{V_b} \, d\phi = \frac{Kq_{\alpha}Q}{V_b} \int \cos \phi \, d\phi$$

or

$$\Delta P = \frac{Kq_{\alpha}Q}{V_b} (\sin \phi_2 - \sin \phi_1)$$

where ϕ_1 and ϕ_2 are the initial and final values of ϕ. From Figure 4-6 we see that $\phi_1 = -\phi_0$, $\phi_2 = +\phi_0$, where $2\phi_0 + \theta = 180^\circ$. Thus $\sin \phi_2 - \sin \phi_1 = 2 \sin (90 - \frac{1}{2}\theta) = 2 \cos \frac{1}{2}\theta$. Writing ϕ in terms of θ and using our previous result for the net momentum change, $\Delta P = 2MV \sin \frac{1}{2}\theta$, we have, finally,

$$2MV \sin \frac{1}{2}\theta = \frac{Kq_{\alpha}Q}{V_b} \cdot 2 \cos \frac{1}{2}\theta$$

or

$$b = \frac{Kq_{\alpha}Q}{MV^2} \cot \frac{1}{2}\theta \quad (4-7)$$

Of course, it is not possible to choose or to know the impact parameter for any α particle; however, all such particles with impact parameters less than, or equal to, a particular b will be scattered through an angle θ greater than or equal to that given by Eq. (4-7). Let the intensity of the incident α-particle beam be I_0 particles per

Figure 4-7 Momentum diagram for Rutherford scattering. The magnitude of the momentum change ΔP is related to the scattering angle θ by $\Delta P = 2MV \sin \frac{1}{2}\theta$.

ΔP