Show all steps in your calculations. Justify all answers. Write clearly. Suggestion: do the problems you find easiest first
Some constants: $h c=12,400 \mathrm{eVA}, k_{B}=1 / 11,600 \mathrm{eV} / \mathrm{K}, m_{e} c^{2}=511,000 \mathrm{eV}$
$\hbar c=1973 \mathrm{eV} \Lambda ; k e^{2}=14.4 \mathrm{eV} \Lambda ; 1 \Lambda=10^{-10} \mathrm{~m} ; m_{\text {neurron }} c^{2}=939.6 \mathrm{MeV}$
Problem 1 (10 pts)

An electron is in the lowest state of the potential well shown in the figure. The width of the well is $\mathrm{L}=2.3562 \mathrm{~A}=(3 / 4) \pi \mathrm{A}$.
(a) What would be the energy of this electron if $\mathrm{V}_{0}=\infty$? $\left(\hbar^{2} / m_{e}=7.62 \mathrm{eVA}{ }^{2}\right)$
(b) If the energy of the electron is 3.81 eV , what is the value of V_{0}, in eV ?
(c) Make a plot of the wavefunction for case (b) that is qualitatively correct.
(d) For extra credit (3 pts) Find the minimum value of V_{0} (in eV) that will bind an electron in this well, and make a plot of the wavefunction for that case.

Problem 2 (10 pts)
An electron is described by the wavefunction $\psi(x)=C e^{-\alpha x^{2} / 2}$.
(a) Find C in terms of α.
(b) Find its average momentum, $\langle\mathrm{p}>$ in terms of α. Justify your answer.
(c) Find $\left\langle\mathrm{p}^{2}\right\rangle$ and $\Delta \mathrm{p}$ in terms of α.

$$
\int_{-\infty}^{\infty} d x e^{-\lambda x^{2}}=\sqrt{\frac{\pi}{\lambda}} ; \int_{-\infty}^{\infty} d x \mathrm{x}^{2} e^{-\lambda x^{2}}=\frac{1}{2} \sqrt{\frac{\pi}{\lambda^{3}}} ; \int_{-\infty}^{\infty} d x \mathrm{x}^{4} e^{-\lambda x^{2}}=\frac{3}{4} \sqrt{\frac{\pi}{\lambda^{5}}}
$$

Problem 3 (10 pts)

For the barrier on the left, for every 10,000 particles of mass m incident, 100 particles tunnel through. The incident particle energy is $\mathrm{V}_{0} / 3 . \mathrm{V}_{0}=$ barrier height. (a) For the case in the middle (same barrier), for every 10,000 particles of mass m incident with energy $2 \mathrm{~V}_{0} / 3$, how many tunnel through?
(b) For the barrier on the right and particles of mass m, for what width b do 100 particles tunnel through for every 10,000 incident with energy $2 \mathrm{~V}_{0} / 3$? Give b in terms of a.
(c) For the case in the middle and particles of mass M, 100 tunnel through for every 10,000 incident. Give M in terms of m.

