Show all steps in your calculations. Justify all answers. Write clearly. Suggestion: do the problems you find easiest first

Some constants:
$$hc = 12,400 eVA$$
, $k_B = 1/11,600 eV/K$, $m_e c^2 = 511,000 eV$
 $hc = 1973 eVA$; $ke^2 = 14.4 eVA$; $1A = 10^{-10} m$; $m_{neutron}c^2 = 939.6 MeV$

Problem 1 (10 pts)

An electron is in the lowest state of the potential well shown in the figure. The width of the well is L=2.3562 A= $(3/4)\pi$ A.

(a) What would be the energy of this electron if $V_0 = \infty$? ($\hbar^2/m_e = 7.62 \ eVA^2$)

(b) If the energy of the electron is 3.81 eV, what is the value of V_0 , in eV?

(c) Make a plot of the wavefunction for case (b) that is qualitatively correct.

(d) For extra credit (3 pts) Find the minimum value of V_0 (in eV) that will bind an electron in this well, and make a plot of the wavefunction for that case.

Problem 2 (10 pts)

An electron is described by the wavefunction $\psi(x) = Ce^{-\alpha x^2/2}$

(a) Find C in terms of α .

(b) Find its average momentum, $\langle p \rangle$ in terms of α . Justify your answer.

(c) Find $\langle p^2 \rangle$ and Δp in terms of α .

$$\int_{-\infty}^{\infty} dx \ e^{-\lambda x^2} = \sqrt{\frac{\pi}{\lambda}} \quad ; \quad \int_{-\infty}^{\infty} dx \ x^2 e^{-\lambda x^2} = \frac{1}{2} \sqrt{\frac{\pi}{\lambda^3}} \quad ; \quad \int_{-\infty}^{\infty} dx \ x^4 e^{-\lambda x^2} = \frac{3}{4} \sqrt{\frac{\pi}{\lambda^5}}$$
Problem 3 (10 ptc)

For the barrier on the left, for every 10,000 particles of mass m incident, 100 particles tunnel through. The incident particle energy is $V_0/3$. V_0 =barrier height. (a) For the case in the middle (same barrier), for every 10,000 particles of mass m incident with energy $2V_0/3$, how many tunnel through?

(b) For the barrier on the right and particles of mass m, for what width b do 100 particles tunnel through for every 10,000 incident with energy $2V_0/3$? Give b in terms of a. (c) For the case in the middle and particles of mass M, 100 tunnel through for every 10,000 incident. Give M in terms of m.