Show all steps in your calculations. Justify all answers. Write clearly.
Some constants: $h c=12,400 \mathrm{eVA}, k_{B}=1 / 11,600 \mathrm{eV} / K, m_{e} c^{2}=511,000 \mathrm{eV}$
Problem 1 (10 pts)
In an ideal gas at temperature T the molecules of mass m are confined to move only in two dimensions, x and y, with normalized velocity distribution
$F\left(v_{x}, v_{y}\right)=\left(\frac{m}{2 \pi k_{B} T}\right) e^{-m\left(v_{x}^{2}+v_{y}^{2}\right) /\left(2 k_{B} T\right)}$
(a) Verify that this distribution is normalized, using that $\int_{-\infty}^{\infty} d x e^{-\lambda x^{2}}=\sqrt{\frac{\pi}{\lambda}}$.
(b) Find the normalized speed distribution $g(v)$, where $g(v) d v$ is the probability that a molecule has speed between v and $v+d v$. Show explicitly that the $g(v)$ that you find is normalized.
(c) The average speed $\langle\mathrm{v}\rangle$ is given by $\langle v\rangle=\sqrt{A \frac{k_{B} T}{m}}$, where A is a number. Find A .
(d) The rms speed is given by $v_{r m s} \equiv \sqrt{\left\langle v^{2}\right\rangle}=\sqrt{B \frac{k_{B} T}{m}}$, where B is a number. Find B , using either $F\left(v_{x}, v_{y}\right)$ or $g(v)$.
Hints: $\int_{0}^{\infty} d x x^{n+2} e^{-\lambda x^{2}}=-\frac{d}{d \lambda} \int_{0}^{\infty} d x x^{n} e^{-\lambda x^{2}} ; \quad \int_{0}^{\infty} d x x e^{-\lambda x^{2}}=\frac{1}{2 \lambda}$
Problem 2 (10 pts)
A black body at temperature $\mathrm{T}=4,674 \mathrm{~K}$ emits $1 \mu \mathrm{~W}$ of power in the wavelength range $620,000 \mathrm{~A}$ to $620,001 \mathrm{~A}$.
(a) What is the maximum power that this body emits within a wavelength range of 1 A ? For what wavelength is that?
(b) At which wavelength (approximately) larger than the one found in (a) does this body emit $16 \mu \mathrm{~W}$ of power within a wavelength range of 1 A ?
(c) Find a wavelength that is smaller than the one found in (a) where the body emits less than $1 \mu \mathrm{~W}$ of power in a wavelength range of 1 A around that wavelength.

Problem 3 (10 pts)
In a Compton scattering experiment the maximum kinetic energy of the scattered electron is 248 eV .
(a) What is the wavelength of the incident photon, in A?
(b) What is the minimum kinetic energy of the scattered electron, in eV ?
(c) When the scattered electron has kinetic energy 100 eV , at what angle is the photon scattered? Give your answer in degrees.
(d) For extra credit (3 pts): When the scattered electron has the largest possible momentum in direction perpendicular to the incident direction, at what angle is the photon scattered? Give your answer in degrees.

