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Kinetic Theory

CLASSICAL CONCEPT REVIEW 8

Information concerning the initial motions of each of the atoms of macroscopic sys-
tems is not accessible, nor do we have the computational capability even with the 
largest and fastest computers to apply the laws of motion to each even if it were; 
therefore, we resort to statistical methods to determine theoretically the values of 
observable properties of such systems. Indeed, many of these, such as pressure, tem-
perature, heat capacity, and thermal conductivity, are concepts that are only meaning-
ful for large ensembles of particles since they represent average properties of the 
constituent particles. In experimental measurements of these quantities it is the 
response of the system that is of interest, not that of the individual particles. In this 
context it is worth noting that the complexity of such systems is more than just a mat-
ter of enormous amounts of quantitative detail. The very complexity of the system 
can itself result in remarkable features that may seem quite unexpected. For example, 
if we consider a monoatomic gas made up of identical atoms, such as helium or neon, 
which interact with one another through the known electromagnetic force, this micro-
scopic information provides no hint of the fact that the gas may suddenly condense 
into a liquid. Yet that is exactly what happens.

In this section we will illustrate how the application of the laws of mechanics to 
the microscopic constituents of a macroscopic system can, with the aid of statistical 
techniques, predict the behavior of the system in agreement with experimental obser-
vation. If you already have a firm grasp of the kinetic theory of gases from an introduc-
tory physics or chemistry course, you may omit this CCR unit. However, if it has been 
a while since you studied kinetic theory, you may want to review this unit, particularly 
if you are planning to review the CCR derivation of the Boltzmann distribution. In that 
regard, you may also find it useful to review the CCR unit on distribution functions.

Basic Assumptions of the Theory
Kinetic theory attempts to describe the macroscopic properties of gases in terms of a 
microscopic picture of the gas as a collection of particles in motion. The pressure 
exerted by a gas on the walls of its container is an example of a property that is read-
ily calculated by kinetic theory. The gas exerts a pressure on its container because, as 
molecules of the gas collide with the walls of the container, they must transfer 
momentum to the walls. The total change in momentum per second is the force 
exerted on the walls by the gas. We start by making the following assumptions:

1. The gas consists of a large number, N, of identical molecules that are separated 
by distances that are large compared with their diameters. As we will see later in 
the chapter, this is equivalent to assuming that the particles are distinguishable 
from one another.
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2. The molecules make elastic collisions with each other and with the walls of 
the container, and they are non-interacting, that is, they exert no forces on each 
other except when they collide.

3. In the absence of external forces (we can neglect gravity), there is no preferred 
position for a molecule in the container, and there is no preferred direction for 
the velocity vector.

Kinetic Theory of Gases
For the moment we will ignore the collisions the molecules make with each other. 
This is not a serious flaw in our calculation because, since momentum is conserved, 
collisions of molecules with one another will not affect the total momentum in any 
given direction. Let m be the mass of each molecule. Taking the x axis to be perpen-
dicular to the wall in Figure KT-1a, the x component of momentum in a molecule is 
2mvx before it hits the wall and 1mvx afterward. The magnitude of the change in 
momentum of the molecule due to its collision with the wall is 2mvx. The total change 
in the momentum of all the molecules in some time interval Dt is 2mvx times the num-
ber that hit the wall during this interval.

Let us consider a gas in an imaginary cylindrical container of volume V with each 
end wall having area A as illustrated in Figure KT-1b. Let Ni be the number of gas 
molecules in the container whose x component of velocity is vxi and let the length of 
the cylinder be vxi Dt. Thus, in a time interval Dt molecules with vxi will travel a 
distance parallel to the x axis equal to vxi Dt. Therefore, half of the Ni molecules, those 
with vxi in the 2x direction, will collide with the left end wall in the time interval Dt; 
the other half will collide with the right end wall during that time. If we use the left 
end wall as an example, the number hitting the wall during Dt is 11

22 * (number per 
unit volume) * (volume), or

KT-1 (a) A molecule with momentum p collides elastically with the wall, the only effect of 
which is to reverse the direction of the x component px while leaving the y and z components 
unchanged. The molecule undergoes a net change of momentum equal to 2mvx. (b) Gas 
molecules in a cylindrical container colliding with the walls. With the x axis parallel to the 
cylindrical surface, only those molecules colliding with the ends reverse the directions of their 
x components of momentum pxi. A molecule starting at the right end with x velocity component 
vxi will just collide at the left end in time Dt, where the length of the cylinder is vxi Dt.
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The impulse exerted by the wall on these molecules equals the total change in momen-
tum of these molecules, which is 2mvx times the number that hit:

 Ii = a
Ni vxi A Dt

2V
b * 2mvxi =

Ni mv2
xi A Dt

V
 KT-1

This also equals the magnitude of the impulse exerted by these molecules on the wall. 
We obtain the average force exerted by these molecules by dividing the impulse by 
the time interval Dt. The pressure is this average force divided by the area A. The 
pressure exerted by these molecules is thus

 Pi =
Ii

Dt A
=

Ni mv2
xi

V
 

The total pressure exerted by all the molecules is obtained by summing over all the x 
components of velocity vxi that are in the 2x direction:

 P = aPi = a Ni mv2
xi

V
=

m

V aNi v2
xi 

We can write this in terms of the average value of v2
x, defined as

 1v2
x2av =

1

N aNi v2
ix 

where N = Ni is the total number of molecules. Thus, we can write for the pressure 
on the end walls

 P =
Nm

V
1v2

x2av KT-2

Since there is no preferred direction of motion of the molecules, 1v2
x2av must be the 

same as 1v2
y2av and 1v2

z2av. The square of the speed is 

 v2 = v2
x + v2

y + v2
z  

Hence

1v22av = 1v2
x2av + 1v2

y2av + 1v2
z2av = 31v2

x2av

Thus, we can write the pressure in terms of the average square speed and the kinetic 
energy:

 P =
1

3
 
N

V
m1v22av =

2

3
 
N

V
a 1

2
 mv2b

av
 KT-3

where N>V  is called the number density. This result shows that kinetic theory pre-
dicts that the pressure exerted by a gas is proportional to the number of molecules 
per unit volume and to their average kinetic energy. Writing Ek = 1mv2>22av for the 
average kinetic energy of a molecule, we have

 PV =
2

3
N Ek KT-4

To see how well this prediction agrees with experiment, let us compare this result 
with the ideal gas law,
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 PV = nRT  KT-5

an empirical relation where n, the number of moles in the system, is equal to the total 
number of molecules divided by Avogadro’s number NA:

 n =
N

NA

 

where R is the gas constant:

 R = 8.31 J>K # mol = 1.99 cal>K # mol KT-6

Equation KT-4 can then be written in terms of n and NA as

 PV =
2

3
nNAEk KT-7

where the product NAEk is the average total kinetic energy of one mole. Thus, 
Equation KT-7 agrees with the kinetic theory prediction, Equation KT-5, provided 
that      

 NAEk =
3

2
 RT  KT-8

To test if Equation KT-8 is true, consider the molar heat capacity at constant volume 
Cv, which is defined as

 CV = lim
DTS0

DQ

DT
where DQ is the heat input and DT is the temperature rise of 1 mole of a substance. 
Since no work is done if the volume is constant, the heat input equals the change in 
internal energy U (from the first law of thermodynamics). Thus,

 CV = a 0  U

 0  T
b

V

 

If we assume that the total internal energy is translational kinetic energy, we have 
from Equation KT-8,

 U = NAEk =
3

2
 RT  

and 

 CV =
0  13RT>22

0  T
=

3

2
 R = 2.98 cal>mol 

This value agrees well with the results of experiments for monatomic gases such as 
argon and helium (see Table KT-1). This agreement is quite remarkable, considering 
the simple microscopic model of the gas on which it is based, and was an important 
early success of statistical physics, that is, kinetic theory. For other gases, the mea-
sured molar heat capacity is greater than 13>22R, indicating that some of the heat 
input goes into forms of internal energy other than translational kinetic energy, such 
as energy of molecular rotation or vibration.

Equation KT-8 implies another extremely interesting prediction, which can be 
emphasized by writing it as

 Ek =
3

2
 
R

NA

 T =
3

2
 kT  KT-9
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where k = R>NA, the gas constant per molecule, is called Boltzmann’s constant:

 k = 1.382 * 10-23 J>K = 8.617 * 10-5 eV>K KT-10

Thus, the absolute temperature measures the average translational kinetic energy of 
the molecules. (We include the word translational here because a molecule may have 
other kinds of kinetic energy, for example, rotational or vibrational. Only the transla-
tional kinetic energy has entered into our calculation of the pressure exerted on the 
walls of the container.) The total translational kinetic energy of n moles of a gas con-
taining N molecules is

 Ek = NEk =
3

2
 NkT =

3

2
 nRT  

The translational kinetic energy is 13>22kT  per molecule or 13>22RT  per mole. At a 
typical temperature of T = 300 K (= 81°F), the quantity kT has the value

 kT = 2.585 * 10-2 eV �
1

40
 eV 

Thus, the mean translational kinetic energy of a gas molecule at room temperature is 
only a few hundredths of an electron volt. We will discuss this result in more detail 
below.

 Table KT-1 Cv for some gases at 15°C and 1 atm

Gas Cv (cal/mol-deg) Cv/R

Ar 2.98 1.50

He 2.98 1.50

CO 4.94 2.49

H2 4.87 2.45

HCl 5.11 2.57

N2 4.93 2.49

NO 5.00 2.51

O2 5.04 2.54

Cl2 5.93 2.98

CO2 6.75 3.40

CS2 9.77 4.92

H2S 6.08 3.06

N2O 6.81 3.42

SO2 7.49 3.76

R = 1.987 cal>mol@deg

From J. R. Partington and W. G. Shilling, The Specific Heats of Gases (London: Ernest Benn, Ltd., 
1924).
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An Application of Kinetic Theory
An interesting consequence of Equation KT-8 concerns the speed of a molecule in the 
gas. We do not expect all the molecules in a gas to have the same speed. The distribu-
tion of molecular speeds is discussed in Section 8-1 of the textbook; however, even 
without knowing this distribution, we can calculate the average square speed (v2)av 
and the root-mean-square (rms) speed vrms = 3 1v22av4 1

2. We have

 1v22av =
2Ek

m
=

3RT

NA m
=

3RT

M
 KT-11

where M is the molecular weight. Then

 vrms = A3RT

M
 KT-12

It is not hard to remember the order of magnitude of molecular speeds if we recall that 
the speed of sound in a gas is given by

 vsound = AgRT

M
 

where g is the ratio of the heat capacity at constant pressure to that at constant vol-
ume. (For air, g = Cp>Cv = 1.4.) Thus, the rms speed of gas molecules is of the 
same order of magnitude as the speed of sound in the gas.

EXAMPLE KT-1 vrms for N2 molecules Calculate the root-mean-square speed 
of nitrogen molecules at T = 300 K and at T = 273 K.

SOLUTION
M = 28 g>mol = 28 * 10-3 kg>mol.

For T = 300 K:

  vrms = a 3 * 8.31 J # K-1mol-1 * 300 K

28 * 10-3 kg>mol
b

1>2

  = 517 m>s
For T = 273 K:

  vrms = a 3 * 8.31 J # K-1mol-1 * 273 K

28 * 10-3 kg>mol
b

1>2

  = 493 m>s
Thus, the rms speed of nitrogen molecules (and the speed of sound) in air is about 
5 percent slower in cold weather than on a warm day.

Questions

1. Why can we neglect collisions of the molecules with the cylindrical surface of 
the container when calculating the pressure exerted on the end of the cylinder?
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2. How does Ek for He molecules compare with Ek for Kr molecules under 
standard conditions?

3. How does vrms for H2 molecules compare with vrms for O2 molecules under 
standard conditions?

4. How does the speed of sound in He compare with that in N2?
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