
HW problem week 8

A 3d quantum harmonic oscillator is described by the potential
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1. In cartesian coordinates, what would be the first four energy eigenstates if all of the ω

were equal? For unequal ω, what are the corresponding wave functions and energies?

Since the Hamiltonian is separable, we can write the wavefunction as Ψµ,ν,λ = ψµ(x)ψν(y)ψλ(z)

where ψn is the n′th 1-d harmonic oscillator wave function with the appropriate fre-

quency. The ground state is

Ψ000 ∼ e−
m
2~ (ωxx2+ωyy2+ωzz2)

and it has energy ~/2(ωx+ωy+ωz). The first couple excited states are∼ xΨ000, yΨ000, zΨ000

with energies 3~ωx/2+~/2(ωy+ωz), 3~ωy/2+~/2(ωx+ωz), and 3~ωz/2+~/2(ωx+ωy)

respectively.

2. In words (i.e., something other than ωx = ωy), what is the condition on the potential

for Lz to be a sharp observable? Show by explicit calculation the the ground state is

an eigenstate of Lz = −i~∂φ only if ωx = ωy.

Lz will be a sharp observable if the potential has rotational symmetry in the x-y plane,

which will be the case if ωx = ωy. For the total angular momentum to be a good

quantum number requires complete rotational symmetry, which means all ω must be

equal.

Using x = r sin θ cosφ and y = r sin θ sinφ I find ∂φΨ000 ∼ r2 sin2 θ sin 2φ(ωx−ωy)Ψ000.

So Ψ000 will be an eigenstate (with eigenvalue zero) only if ωx = ωy.

3. If ωx = ωy = ωz, the potential has full spherical symmetry. In this case, give the

angular dependence of the ground state, and the three first excited states. For each of

these states, what is their total angular momentum, and what is their Lz?

In this case, we know that in spherical polar coordinates, the angular part of the

Shroedinger equation are solved by the spherical harmonics Ylm(θ, φ). (this is just like

the hydrogen atom) So the full wavefunctions are Ψnlm = Rnlm(r)Ylm(θ, φ) where R is

some unknown function of r which could in principle depend on l and m as well. As

for the hydrogen atom, the state Ψnlm has total angular momentum |L| = ~
√
l(l + 1)

and has Lz = ~m.
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4. Your answers for the first excited wave functions in part 1 were different than your

answer in part 3. By taking linear combinations of the wave functions from part 1 you

can put the wavefunctions into the form you found in part 3. Using the table on page

282 of the textbook, find explicitly the linear combinations which produce the three

l = 1 states. What (up to some overall constant) are the functions R2,l,m?

In polar coordinates, x = r sin θ cosφ, y = r sin θ sinφ, and z = r cos θ. So apparently,

the wavefunction zΨ000 is already in the desired form:

ze−mωr
2/2~ =

(
re−mωr

2/2~
)

cos θ.

This is the state with l = 1 and m = 0, and has R2,1,0 ∼ re−mωr
2/2~. To get the m = ±1

states, use the fact the cosφ± i sinφ = e±iφ. So

x+ iy = r sin θ(cosφ+ i sinφ) = r sin θeiφ ∼ rY1,1.

Similarly, Y1,−1 is obtained by taking the other combination x− iy. These states have

thus have m = +1 and −1 respectively. The radial functions are the same for all three.

5. For the spherically symmetric case, find the next state which has zero total angular

momentum. What is its energy?

For this we need to use the second excited state wavefunction of the 1d QHO which

are proportional to (1− 2mωx2/~)e−mωx
2/~, with a similar expression for y and z.

If we form the linear combination ψ2(x)ψ0(y)ψ0(z)+ψ0(x)ψ2(y)ψ0(z)+ψ0(x)ψ0(y)ψ0(z),

you can check that this wavefunction is proportional to

(3− 2mωr2/~)e−mωr
2/2~.

This wavefunction has no angular dependence (compare to Y00) so it has l = 0. It’s

energy is 2~ω + 3/2~ω.
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