
HW problem week 6

Your turned in assignment should be clearly written and easy to follow! Learning how to

explain your work in a way that is as easy as possible to follow is an important part of your

training as a physicist. An incoherent mess of equations with a correct final answer could

receive less points than a solution which is clearly explained at every step but has an algebra

mistake somewhere. Once you’ve solved the problem, you can rewrite it on a new piece of

paper for clarity if you need to.

The normalized eigenfunctions of the infinite square well potential are ψn(x) =
√

2
L

sin(nπx/L)

inside the well.

1. Use these eigenstates to solve the time dependent schrodinger equation to find Ψn(x, t).

Using the full time dependent wave function, calculate 〈x〉(t) and 〈p〉(t) in the n’th

energy eigenstate.

Once we have an eigenstate ψn with energy εn, the time dependence is just an oscillating

exponential. So Ψn(x, t) = ψn(x)e−iεnt/~ ≡ ψn(x)e−iωnt. To calculate the expectation

value:

〈x〉 =

∫
dx Ψ∗

n(x, t)xΨn(x, t) =

∫
dx ψn(x)∗e+iωntxψn(x)e−iωnt =

∫
dx ψ∗

n(x)xψn(x)

〈pop〉 =

∫
dx ψn(x)∗e+iωnt(−i~∂x)ψn(x)e−iωnt =

∫
dx ψ∗

n(x)(−i~∂x)ψn(x)

We’ve calculated both of the expressions at the right hand side in class/discussion/problem

session: 〈x〉 = L/2 and 〈p〉 = 0. Neither of them have any time dependence. This is

generally true whenever we calculate an expectation value in an energy eigenstate.

2. Calculate the average energy 〈E〉(t) and the average square energy 〈E2〉(t) to find the

uncertainty in the energy ∆E =
√
〈E2〉 − 〈E〉2. Hint: use the fact that the ψn are

eigenstates of Ĥ.

Following the hint, Ĥψn = εnψn so Ĥ2ψn = Ĥ(Ĥψn) = Ĥεnψn = εnĤψn = ε2nψn. The

average energy is

〈E〉 =

∫
dxΨ∗ĤΨ = εn

∫
dx Ψ∗Ψ = εn

and the average square energy is

〈E2〉 =

∫
dx Ψ∗Ĥ2Ψ = ε2n

∫
dx Ψ∗Ψ = ε2n.
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So the energy uncertainty is
√
〈E2〉 − 〈E〉2 = 0. There is no uncertainty in the energy,

because we are in an energy eigenstate.

3. Now consider the superposition state

Φ(x, t) =
1√
2

(Ψ1(x, t) + Ψ4(x, t)) .

Verify that this state is normalized.∫
dx Φ∗Φ =

1

2

∫
dx (ψ1(x)∗eiω1t + ψ4(x)∗eiω4t)(ψ1(x)e−iω1t + ψ4(x)e−iω4t)

=
1

2

∫ dx |ψ1|2︸ ︷︷ ︸
1

+

∫
dx |ψ2|2︸ ︷︷ ︸

1

+ei(ω1−ω4)t

∫
dx ψ∗

1ψ4︸ ︷︷ ︸
0,check it

+e−i(ω1−ω4)t

∫
dx ψ1ψ

∗
4︸ ︷︷ ︸

0

 = 1

4. For this new state Φ, calculate 〈x〉(t) and 〈p〉(t). Would you call the state Φ(x, t) a

stationary state? Why or why not?

Look up at the solution for part 3, and imagine sandwiching an x or a pop in between

Φ∗ and Φ. We can save ourselves a little bit of effort since we already know that

〈x〉 = L/2 and 〈p〉 = 0 if we evaluate their expectation value in a given eigenstate,

so we only have to calculate the cross terms
∫
ψ1 (x, p̂) ψ4 and

∫
ψ4 (x, p̂) ψ1. The

integrals for 〈x〉 turn out to be the same so I will just do one of them: they can be

done by using trig product formulas to turn sinA sinB into a combination of cosA±B
and then using integration by parts. This is what is sometimes called ‘straightforward

yet tedious’: ∫
dx ψ1xψ4 =

2

L

∫
dx x sin

(πx
L

)
sin

(
4πx

L

)
= − 32L

225π2

We also need∫
dx ψ1(−i~∂x)ψ4 = −i~ 2

L

4π

L

∫
dx sin(πx/L) cos(4πx/L) = − 16~

15iL
,∫

dx ψ4(−i~∂x)ψ1 = −i~ 2

L

π

L

∫
dx cos(πx/L) sin(4πx/L) =

16~
15iL

Finally, putting it all together,

〈x〉(t) =
L

2
− 64L~

225π2
cos(ω14t)

where ω14 = ω1 − ω4 and

〈p〉(t) =
32~
15L

sinω41t.
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5. Repeat part 2 for the state Φ. Hint: be careful in how you apply the hint from part 2.

The equation Ĥψn = εnψn applies to each energy eigenstate individually (note that

the function Φ is *not* an energy eigenstate). So when we calculate 〈H〉, the cross

terms will drop out again. Explicitly:

1

2

∫
dx (ψ1(x)∗eiω1t + ψ4(x)∗eiω4t)Ĥ(ψ1(x)e−iω1t + ψ4(x)e−iω4t)

=
1

2

∫
dx (ψ1(x)∗eiω1t + ψ4(x)∗eiω4t)(ε1ψ1(x)e−iω1t + ε4ψ4(x)e−iω4t)

 
1

2
(ε1 + ε4)

(the squiggly arrow includes using the fact that the wave functions ψn are normalized,

among other things). By a similar story (use Ĥ2 = ĤĤ and apply them one after

another to the functions on the right), find

〈Ĥ2〉 =
1

2
(ε21 + ε24).

Now, (∆E)2 = 1
2
(ε21 + ε24)−

(
1
2
(ε1 + ε4)

)2
= 1

4
(ε1 − ε4)2.

6. Using the time-energy uncertainty principle ∆E∆t > ~/2, estimate approximately how

much time the particle spends in a particular eigenstate state before flipping to the

other one.

Setting ∆E∆t = ~/2 we get

∆t =
~
2

2

|ε1 − ε4|
=

~
|∆E14|

.

There is a good lesson to learn here which is that there is a relationship in quantum

mechanics between energy difference of a process, and the characteristic time scale over

which that process occurs, as τ ∼ ~
∆E

or 1
ω

. In this problem, we see that the energy

difference between the two states *literally is* the frequency of the oscillations in the

nonstationary state.

3


