HW problem week 6

Your turned in assignment should be clearly written and easy to follow! Learning how to explain your work in a way that is as easy as possible to follow is an important part of your training as a physicist. An incoherent mess of equations with a correct final answer could receive less points than a solution which is clearly explained at every step but has an algebra mistake somewhere. Once you've solved the problem, you can rewrite it on a new piece of paper for clarity if you need to.

The normalized eigenfunctions of the infinite square well potential are $\psi_n(x) = \sqrt{\frac{2}{L}} \sin(n\pi x/L)$ inside the well.

- 1. Use these eigenstates to solve the time dependent schrodinger equation to find $\Psi_n(x,t)$. Using the full time dependent wave function, calculate $\langle x \rangle(t)$ and $\langle p \rangle(t)$ in the *n*'th energy eigenstate.
- 2. Calculate the average energy $\langle E \rangle(t)$ and the average square energy $\langle E^2 \rangle(t)$ to find the uncertainty in the energy $\Delta E = \sqrt{\langle E^2 \rangle \langle E \rangle^2}$. Hint: use the fact that the ψ_n are eigenstates of \hat{H} .
- 3. Now consider the superposition state

$$\Phi(x,t) = \frac{1}{\sqrt{2}} \left(\Psi_1(x,t) + \Psi_4(x,t) \right)$$

Verify that this state is normalized.

- 4. For this new state Φ , calculate $\langle x \rangle(t)$ and $\langle p \rangle(t)$. Would you call the state $\Phi(x,t)$ a stationary state? Why or why not?
- 5. Repeat part 2 for the state Φ . Hint: be careful in how you apply the hint from part 2.
- 6. Using the time-energy uncertainty principle $\Delta E \Delta t > \hbar/2$, estimate approximately how much time the particle spends in a particular eigenstate state before flipping to the other one.