
HW problem week 1

Your turned in assignment should be clearly written and easy to follow! Learning how to

explain your work in a way that is as easy as possible to follow is an important part of your

training as a physicist. An incoherent mess of equations with a correct final answer could

receive less points than a solution which is clearly explained at every step but has an algebra

mistake somewhere. Once you’ve solved the problem, you can rewrite it on a new piece of

paper for clarity if you need to.

An experimentalist has a gas of N ionic molecules confined in a cubic box whose sides are

length L. By applying an electric field in the z direction, they subject the molecules to a

potential V (z) = αz. The electric charge of the molecules is small and the gas is dilute

enough so that you can neglect the coulomb force between different molecules and they are

well described by statistical mechanics (i.e. they follow the Boltzmann distribution). If you

need to plug in numbers in the following, let L = 2 mm, α = 10−19 J/m, and N = 108.

1. Derive the normalized distribution function for the height of the molecules ρ(z).

The boltzmann distribution is ρ(r,v) ∼ e−βE(r,v). In this case, the relevant part is

ρ(z) ∼ e−αβz so all we need to do is normalize it.

ρ(z) = N
αβeαβ(L−z)

eαβL − 1
.

2. The experimentalist measures the number of particles in the lower half of the box and

the upper half of the box separately, and finds that one of these quantities is twice as big

as the other. Which one is larger? Use this information to determine the temperature.

Let f1 =
∫ L/2
0

ρ(z)dz and f2 =
∫ L
L/2

ρ(z)dz be the probability for a particle to be in the

lower and upper half of the box respectively. Then on average there are Nf1 particles

in the bottom half and Nf2 particles in the upper half. Using the above result for ρ,

we find the ratio f1/f2 = eLαβ/2 and set it equal to two. So we have eLαβ/2 = 2 or

β = 2 log 2/Lα. For numbers given above, β = 6.93147 × 1021J−1 and T = 10.4543 K.

Thats kind of cold but definitely achievable in a lab.

3. Now, the experimentalist studies the speed distribution of the particles. After some

careful measurements, they find that the number of particles with speeds between 4

and 4.0001 m/s is three times the number of particles with speeds between 4.2 and

4.2002 m/s. Use this information to calculate the mass of the molecules.
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Use the maxwell speed distribution. Let v1 = 4 and v2 = 4.2. Then since the velocity

range dv is small we can approximate the integrals and just write

v21e
−βmv21

2 ∆v1 = 3 × v22e
−βmv22

2 ∆v2.

where ∆v1 = 0.0001 and ∆v2 = 0.0002. Rearranging, taking a log, and rearranging

again one finds

m = − 2

β(v21 − v22)
log

(
3
v22∆v2
v21∆v1

)
.

Plugging everything in using β calculated in part 2, I find m = 3.32∗10−22 kg. You may

have noticed that the total number of particles N never appeared in any calculation

we did. That’s because everything was given in terms of ratios, where N cancels out.

If you were asked to find the number of particles in a certain window of speeds or

velocities or heights, then you would need to carry along N .

4. Bonus question (ungraded: for your enjoyment, or extra practice): What is the average

energy of the molecules?

Equipartition theorem gives 3
2
kBT for the average kinetic energy. The average potential

energy is calculated as ∫
dz ρ(z)αz =

αβL− eαβL + 1

β − βeαβL
.

So

Ē =
3

2
kBT +

αβL− eαβL + 1

β − βeαβL
.
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