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Distribution Functions

CLASSICAL CONCEPT REVIEW 9

The calculation of the pressure of a gas in the CCR unit Kinetic Theory gives us inter-
esting information about the average square speed, and therefore the average ener-
gies, of the molecules in a gas, but it does not yield any details about the distribution 
of molecular velocities. Distribution functions are encountered frequently in Chapter 
8 and in several later chapters. Here we will discuss distribution functions in general, 
with some elementary examples from common experience.

Suppose a teacher gave a 25-point quiz to a large number N of students. In order 
to describe the results of the quiz, the teacher might give the average or median score, 
but this would not be a complete description. For example, if all N students received 
12.5, this is quite a different result than if N>2 students received 25 and N>2 received 0, 
though both results have the same average. A more complete description would be to 
give the number ni who received the score si for all scores si between 0 and 25. An 
alternative would be to divide ni by the total number of students N to give the fraction 
of students fi = ni>N receiving the score si. Both ni and fi (which depend on the vari-
able s) are called distribution functions. The fractional distribution fi is slightly more 
convenient to use. The probability that one of the N students selected at random 
received the score si equals the number of students that received that score, ni = Nfi, 
divided by the total number N; thus this probability equals the distribution function fi. 
Note that
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we have
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Equation DF-1 is called the normalization condition for fractional distribution func-
tions. A possible distribution function for a 25-point quiz is shown in Figure DF-1.

To find the average score, all the scores are added and the result is divided by N. 
Since each score si was obtained by ni = Nfi students, this procedure is equivalent to
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We will take Equation DF-2 as the definition of the average (or mean) score s. 
Similarly, the average of any function g(s) is defined by
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In particular, the mean square score is often useful:

	 s2 = a
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i  fi	

A useful quantity characterizing a distribution is the standard deviation, s, 
defined by

	 s = ca
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	 DF-4

Note that
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Therefore

	 s = 1s2 - s221>2	 DF-5

The standard deviation measures the spread of the values si about the mean. For most 
distributions there will be few values that differ from s by more than a few multiples 
of s. In the case of the normal Gaussian distribution, common in the theory of errors, 
about two-thirds of the values lie within s of the mean value. A Gaussian distribu-
tion is shown in Figure DF-2.

If a student were selected at random from the class and one had to guess that stu-
dent’s score, the best guess would be the score obtained by the greatest number of 
students, called the most probable score, sm. For the distribution in Figure DF-1, sm is 
16 and the average score, s, is 14.17. The root-mean-square score, srms = 1s221>2, is 
14.9, and the standard deviation s is 4.6. Note that 66 percent of the scores for this 
distribution lie within s { s = 14.17 { 4.6.

Now consider the case of a continuous distribution. Suppose we wanted to know 
the distribution of heights of a large number of people. For a finite number N, the 

8
6

12

16

20

14

10

18

22

4

0.04

0.06

0.08

0.10

0.02
2

155 10 20 25
Score si

srms = 14.9

ni fi

s = 14.17–

DF-1  Grade distribution for a 25-point quiz given to 200 students; ni is the number and 
fi = ni>N  is the fraction of students receiving the score si. The average score s and the root-
mean-square score srms are indicated. The shaded area indicates the scores within 1 standard 
deviation of the mean.
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number of persons exactly 6 feet tall would be zero. If we assume 
that height can be determined to any desired accuracy, there is an 
infinite number of possible heights, and the chance that anybody 
has a particular exact height is zero. We would therefore divide 
the heights into intervals Dh (for example, Dh could be 0.1 ft) and 
ask what fraction of people have heights that fall in any particular 
interval. This number depends on the size of the interval. We 
define the distribution function f (h) as the fraction of the number 
of people with heights in a particular interval divided by the size 
of the interval. Thus, for N people, Nf (h)Dh is the number of peo-
ple whose height is in the interval between h and h 1 Dh. A pos-
sible height-distribution function is plotted in Figure DF-3. The 
fraction of people with heights in a particular interval is the area 
of the rectangle Dh  f (h). The total area represents the sum of all 
fractions; thus it must equal 1. If N is very large, we can choose 
Dh very small and still have f (h) vary only slightly between inter-
vals. The histogram f (h) versus h approaches a smooth curve as N 
→ ∞ and Dh → 0. In many cases of importance, the number of 
objects N is extremely large and the intervals can be taken as small 
as measurement allows. The distribution functions f (h) are usually 
considered to be continuous functions, intervals are written dh, 
and the sums are replaced by integrals. For example, if f (h) is a 
continuous function, the average height, which we will write as 
〈h〉 for the continuous function f (h), is1

	 8h9 = 1h f1h2  dh	 DF-6

and the normalization condition expressing the fact that the sum 
of all fractions is 1 is

	 1 f1h2  dh = 1	 DF-7

The CCR unit Boltzmann Distribution illustrates a physical application of distribution 
functions as does the computation of expectation values in Chapters 6 and 7, among 
others, and in a number of More sections.
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DF-2  Gaussian or normal distribution curve. The 
curve is symmetrical about the mean value x, 
which is also the most probable value. Sixty-eight 
percent of the area under the curve is within 1 
standard deviation of the mean. This curve 
describes the distribution of random errors in 
many experimental situations.
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DF-3  A possible height distribution. The fraction 
of the number of heights between h and h 1 Dh is 
proportional to the shaded area. The histogram 
can be approximated by a continuous curve as 
shown.

1The limits on the integration depend on the range of the variable. For this case, h ranges from 0 to ∞. 
We shall often omit explicit indication of the limits when the range of the variable is clear.
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