Stochastic population genetics: homework 6 To be returned on June 7

June 2, 2017

1 Two-loci dynamics

In this problem we are interested in the dynamics of a large population of diploids (throughout the exercise we will always consider the limit of infinite population). We consider two loci in the genome: the first one has two possible alleles A and a, and the second one has two possible alleles B and b. The probabilities of the four types $\mathrm{AB}, \mathrm{Ab}, \mathrm{aB}, \mathrm{ab}$, are x_{1}, x_{2}, x_{3} and x_{4}, respectively. We also define p_{1}, q_{1}, p_{2} and q_{2} respectively the probability of alleles A, a, B and b. Finally, we define linkage disequilibrium as

$$
\begin{equation*}
D=x_{1}-p_{1} q_{1} \tag{1}
\end{equation*}
$$

a. Express $\left\{p_{i}\right\}$ and $\left\{q_{i}\right\}$ in terms of the $\left\{x_{i}\right\}$. Check that you can rewrite D as $x_{1} x_{4}-x_{2} x_{3}$. If alleles are combined into gametes randomly and the system evolves over a long time, what should be the value of D ?
b. We define the indicator random variable l_{1} as 1 if the allele is A and 0 if the allele is a. We define equivalently l_{2} for alleles B and b. Show that

$$
\begin{equation*}
D=\operatorname{cov}\left(l_{1}, l_{2}\right) \tag{2}
\end{equation*}
$$

Check that the p and q s are conserved.
c. We now introduce recombination: when alleles $W X / Y Z$ produce gametes, they will produce gametes $W X$ and $Y Z$ with probability $1-r$ (no recombination) and gametes $W Z$ and $Y X$ with probability r (recombination). Show that

$$
\begin{equation*}
D_{t}=D_{0}(1-r)^{t} \tag{3}
\end{equation*}
$$

What is the typical time over which the system's linkage disequilibrium goes to 0 ?

We now introduce selection in the population: allele i / j has fitness $w_{i, j}$ where $(i, j) \in \llbracket 1,4 \rrbracket^{2}$ and i or j equals $1,2,3,4$ correspond respectively to $\mathrm{AB}, \mathrm{Ab}, \mathrm{aB}$ and ab. Assuming symmetrical maternal and paternal influence on fitness and
that there is no cis-trans effect, i.e. $w_{i j}=w_{j i}$ and $w_{23}=w_{14}$, we can rewrite the fitness as a function of only nine coefficients.
d. Show that

$$
\begin{equation*}
x_{1}^{(t+1)}=\frac{x_{1}^{(t)}\left(\sum_{i} w_{1 i} x_{i}^{(t)}\right)-r w_{14} D_{t}}{\bar{w}^{(t)}} \tag{4}
\end{equation*}
$$

where $\bar{w}^{(t)}$ is the average fitness at time t. What is the equation for the other x_{i} ?
e. Start from the equilibrium point where all the population if $A B / A B$. By introducing a small fraction of the population ϵ with a different genotype, determine the condition for the stability of the monomorphic type $A B / A B$.

