Stochastic population genetics: homework 4 To be returned on May 24

May 17, 2017

1 First passage time for a Brownian particle in 3D

Consider an absorbing sphere of radius a. An isotropically diffusing particle (diffusivity D) is started at radius $r_{0}>a$ and is free to diffuse in the region $a<r<\infty$.
a. Determine and solve the equation for the probability of absorption $p_{\text {abs }}\left(r_{0}\right)$. Specify the boundary conditions.
b. What is the probability of absorption if the particle diffuses inside the sphere, i.e. $r_{0}<a$?
c. Write the equation satisfied by the probability distribution $\mathcal{P}_{\text {abs }}\left(r_{0}, t\right)$ for the time t of absorption conditional to the starting position r_{0}. Specify the boundary conditions.
d. Take the Laplace transform of the equation in c. and specify the boundary conditions.
e. For the case where $r_{0}>a$, look for the solution in the form $\mathcal{P}_{\text {abs }}\left(r_{0}, t\right)=$ $\frac{a}{r_{0}} \Phi\left(r_{0}, t\right)$ and write down the equation for Φ. You should obtain that the resulting equation is the same as for a 1D diffusing particle. Use results derived in class to write down the solution, the inverse Laplace transform and the expression for $\mathcal{P}_{\text {abs }}\left(r_{0}, t\right)$.

2 Probability of extinction in noisy Malthusian growth

Consider the evolution of a population governed by the following forward Kolmogorov (Fokker-Planck) equation

$$
\begin{equation*}
\partial_{t} P\left(N, t \mid N_{0}, 0\right)+\alpha \partial_{N}\left(N P\left(N, t \mid N_{0}, 0\right)=\beta \partial_{N}^{2}\left(N^{2} P\left(N, t \mid N_{0}, 0\right)\right.\right. \tag{1}
\end{equation*}
$$

where α and β are two constants $(\beta>0)$. In class we have calculated the probability of extinction, i.e. reaching a level $N=a$, where a is order unity. Here, we shall be looking at the times of extinction.
a. Write down the equation satisfied by the probability distribution $\mathcal{P}_{\text {abs }}\left(N_{0}, t\right)$ for the time t of absorption conditional to the initial size N_{0} of the population. Specify the boundary conditions.
b. Make the change of variable $z=\log \left(\frac{N_{0}}{a}\right)$. You should obtain that the resulting equation is analogous to the equation for a particle moving with constant velocity and diffusivity, which we have solved in class. Use those results to obtain the expression for $\mathcal{P}_{\text {abs }}\left(N_{0}, t\right)$. Identify and discuss the two possible regimes that should emerge from the solution.

