Stochastic population genetics: homework 1 To be returned on May 1st

April 25, 2017

1 Dynamics of a recessive allele

We consider the dynamics of a diploid population of N individuals, i.e. 2N alleles with two types: A_1 and A_2 , with A_2 corresponding to a genetic disease. At each generation, individuals are generated by independently drawing each one of the two alleles at random from random individuals. We note x the fraction of allele A_2 in the total pool of alleles, and $p_{\nu\mu}$ the fraction of $A_{\nu}A_{\mu}$ individuals, with $(\nu.\mu) \in \{1,2\}^2$.

a. Assuming no allele presents any advantage, write down the Hardy-Weinberg prediction for steady-state in terms of x and the $p_{\nu,\mu}$.

We now assume that having allele A_2 reduces the chances of individuals to reproduce regardless of the other allele. The probability of picking an A_1A_2 individual for reproduction is reduced by a factor $\omega < 1$. Similarly, the probability of choosing an A_2A_2 individual for reproduction is reduced by a factor ω^2 .

- b. Write down the expressions for p_{11} , p_{12} and p_{22} (their sum should be unity by normalization) at generation n+1 as function of the $p_{\mu\nu}$ at generation n.
 - c. What are the two steady-states of this system of equations?
- d. Show that the homozygous state $p_{22}=1$ is linearly unstable, e.g. if $p_{22}=1-\varepsilon$ and $p_{12}=\varepsilon$ (with $\varepsilon\ll 1$) then ε grows over the generations. What do you expect if you initially take $p_{22}=1-\varepsilon$ and $p_{11}=\varepsilon$?
- e. Show that the homozygous state $p_{11}=1$ is linearly stable. This points to the fact that in the limit $N\to\infty$ the allele A_2 will disappear. Is that true if N is finite?
- f. Reach the previous conclusion by assuming Hardy-Weinberg and using (b.) to write down the expression for x' (the fraction x at the generation n+1) as a function of x at the generation n. Show that $x' \ge x$. Write down the expression for the rate of decrease of the A_2 allele.
- g. We now assume that only bi-allelic A_2A_2 individuals suffer a reproductive ω^2 penalty. Does the property (f.) still hold? Make the proof general by

removing the assumption Hardy-Weinberg and still showing that $x' \ge x$. Discuss the stability of the $p_{11} = 1$ state.

h*. We now assume that bi-allelic individuals suffer a reproductive penalty α but that the mono-allelic version of the mutation A_1A_2 have a reproductive advantage, i.e. the probability to be picked for reproduction increases by a factor β . Show that the steady-state distribution of alleles is the solution of two coupled equations of degree 3 (you do not necessarily have to compute the solution). Intuitively, how is this solution going to differ from Hardy-Weinberg? Can you think of a famous disease with similar dynamics?