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Estimation of the Kolmogorov entropy from a chaotic signal
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A new method for estimating the Kolmogorov entropy directly from a time signal is proposed and tested
on examples. The method should prove valuable for characterizing experimental chaotic signals.

While there has been recently a dramatic growth in new
mathematical concepts related to chaotic systems, ' the de-
tailed comparison between models and experimental data
has lagged somewhat. After observing a seemingly chaotic
signal in the laboratory, the researcher is faced with the
question of how to characterize the signal, how to be sure
that it is chaotic (rather than multiperiodic or random), and
how to quantify "how" chaotic the signal is. In this Rapid
Communication we propose a method to estimate the Kol-
mogorov entropy K directly from a time signal. If one ob-
tains a finite, positive E entropy one can answer some of
the above questions with a degree of confidence. Although
we have dissipative systems in mind, the idea presented
below should prove useful for conservative systems as well.

The Kolmogorov entropy is defined as follows: Consider
a dynamical system with F degrees of freedom. Suppose
that the F-dimensional phase space is partitioned to boxes
of size eF. Suppose that there is an attractor in phase space
and that the trajectory x(t) is in the basin of attraction.
The state of the system is now measured at intervals of time

Let p(ii, i2, . . . , id) be the joint probability that
x(t=r) is in box ii, x(t=2r) is in box i2, . . . , and
x(t = dr) is in box iq The Kolm. ogorov entropy is then'

K = —lim lim lim g p(ii, . . . , id)~ dv' lf, . . . , l

inxp (i , .i. . , id) . (1)

As is well known, K =0 in an ordered system, E is infinite
in a random system, but E is a constant &0 in a chaotic
(deterministic) system.

For analytically defined models, it is very easy to estimate
K from the tangent (or "variational") equations describing

I

the evolution of the distance between two (infinitely close)
points. But it is very difficult to determine K directly from
a measured time signal.

In this paper we shall thus define a new quantity K2
which has the following properties: (i) E2 «0; (ii) E2 ~ K;
(iii) K2 is infinite for random systems; and (iv) K2 &0 for
chaotic systems. It will turn out that for typical cases K2 is
numerically close to K Thus E2 has an advantage over the
topological entropy h. Since h & K, h )0 is a necessary but
not sufficient condition for observable chaos. E2 &0 is a
sufficient condition for chaos. The most important property
of K2, however, is that it can be extracted fairly easily from
an experimental signal.

To see how this quantity comes about, consider now the
set of order-q Renyi entropies which are defined as follows:

K~ = —lim lim lim ln g p~(ii, . . . , id)
1 1

r ~ 0 e ~ 0 d ~ oo d 7 q —].

(2)

By writing p'= p exp(q —1) lnp and expanding the exponent
it is easy to see that lim, +Kq=E and lim +Eq h.

Furthermore, it is easy to see that Eq &E for every
q

q )q.
Of all the order-q quantities Kq, E2 is singled out due to

its ease of calculation from a time series. To see this, con-
sider Eq. (2) for fixed values of d ( say d=1) and e. For
q=2 and d=l, we need X;p —= C(e), where p, is the
probability to visit the ith box and the sum i runs over all
the boxes in phase space which contain a piece of the attrac-
tor. This quantity is easily calculable from a time series.
Consider the time series [X;]; i where X;=X(t= is). Up
to an e independent factor,

C(e) = lim
2

[number of pairs of points (n, m) with iX„—X i & e]~-- N'

It has been shown previously that C(e) scales like

C(e) —e' (4)

and v has been called the correlation exponent. It has been proved that v estimates the fractal dimension D of the at-
tractor (i.e., v & D).

For any d we can consider now

Cg( e) = lim, (number of pairs (n, m ) with [ (X„—X ) + (X„+i—X +i)' + . + (X„+d i
—X~+d i)']' ' & e]~-- N'

(&)
with d =2, 3. . . . Up to a factor of order unity,

Cd(e) = g p (Ii, ..., lg)
lip. . . , ld
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FIG. 1 Correlation integral Cd(e) for the Mackey-Glass delay
differential equation vs e. The delay v =23. The error bars are
purely statistical. Points pertaining to the same value of d are con-
nected by lines. The values of d are d =4 (top curve),
8, 12, . . . , 28 (bottom curve).
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FIG. 2. Values of E~ d for the Mackey-Glass delay differential
equations, averaged over the scaling region in ~. The extrapolated
(d ~) value is E~ =0.008 +0.001.

Consequently, Eqs. (2) and (4) lead to

Cq(e) —e"exp( —drK&)
d»oo (6)

In practice we do not need to follow the evolution of all the degrees of freedom. Generically, the whole trajectory
can be reconstructed from d measurements (d ~F) of any single coordinate. Taking any coordinate and denoting it by
X, we consider then

d
~ &/r.

Cd(e) = lim
z

number of pairs (n, m) with g!X„+;—X~+;!'@- i-1

and expect it to give the same estimate Cd(e) —e"
&exp( —d7ICq). At this point we should mention that a re-
lated estimate of E has been proposed by Takens. He
essentially replaces the Euclidean norm in Eq. (7) by the
maximum norm.

The practical implementation now should be clear; if we
plot InCd(e) as a function of Ine for a series of increasing
values of d, we should get a series of straight lines with a
slope v, which are displaced from each other by the factor
exp( —drEq). By looking at

Cd(~)
rc, ,,(.) = —ln

C„+t(e)

we should find
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As an example to clarify the idea, we show in Fig. 1

results pertaining to the Mackey-Glass delay differential
equation with the delay constant w = 23. The system is
turned to be 600 dimensional by the method described in
Ref. 4. It is known to possess a strange attractor which is
characterized by v=—2.4. In Fig. I we plot InCd(~) vs Ine
for d =4, 8, 12, . . . , 28. The time series consisted of
N = 12 000 points, separated by time 4t = 7. %e see indeed
a series of straight lines with a slope of 2.4 +0.05. In order
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FIG. 3. Same as Fig. 1, but for the Henon map. The values of d

are d =2 {top curve), 4,6,8, . . . , 22 (bottom curve).
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agreement with the indirect estimate of E2 from the asymp-
totic behavior of the equations for the tangent vectors. '

Another example is the Henon map, with a = 1.4,
b =0.3. In Fig. 3 we show InCd(e) vs Ine calculated from a
series of N = 15 000 points, for d =2, 4, 6, . . . , 22. The
common slope in the scaling region is v=1.22+0.01 in
agreement with Ref. 4. Figure 4 shows
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FIG. 4 Values of E2d{e) for the Henon map. For d ~ all the
curves tend to the extrapolated common value of E2 =0.325 +0,02.

to estimate the Kolmogorov entropy, we compute the quan-
tities

K2 d(e) =In[Cd(e)/Cd+4(e) ]/47

averaged over the scaling region in e (see Fig. 2). The ex-
trapolated value E2=0.008+0.01 is indeed lower than the
sum of positive Lyapunov exponents, "and it is in perfect

Cd( e)
K,",(.) = —, ln

8+2

for various values of e. Indeed for d ~ these curves
tend to a common value E2=0.325+0.02. This value is
again lower than the Kolmogorov entropy (K =—0.42). But
again it agrees with calculations based on the behavior of
the tangent map.

Summarizing, we might thus conclude that a very good
lower bound on the metric entropy of a strange attractor can
be obtained from an experimental time series, using essen-
tially the same algorithm which gives also a good lower
bound on its dimensions. We hope that this will find appli-
cations in the important task of characterizing experimental
deterministic chaos.
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