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Introduction

Previously we discussed the key traits of a chaotic systems, with the sim-
plest description being a dynamical system that exhibits exponential divergence
of particle trajectories in phase space. In addition, we characterized some of the
key features of chaotic systems such as the appearance of strange attractors and
their fractal nature. In order to quantitatively describe chaotic systems, we intro-
duced a geometric construct called the Box Counting dimension which provided
a simple yet effective method for quantifying the fractal dimension of a strange
attractor in simple systems, with our canonical example being the Bakers Map.
The Baker’s Map provided a very tractable and elegant example that shows that,
counter intuitively, exponential divergence of particle trajectories is possible for
a bounded system. With this exponential divergence clearly being made possible
by the stretching and folding of phase space which is common to many chaotic
systems. The previously discussed Box Counting dimension provided a geometric
way of describing the chaotic system and which we expanded in a natural way
to the more generalized measure, µ, and generalized dimension, Dq. We then
introduced the information dimension D1 which characterized the rate at which
information is produced. We now move away from these geometric descriptions of
chaotic systems to a dynamical discussion that utilizes Lyapunov exponents and
entropy. In doing so we will also find that there are links between the geometric
and the dynamics descriptions.
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Lyapunov Exponents

The Lyapunov exponent is a simple way to characterize the dynamics of a
chaotic system by looking at the effective degrees of freedom of the system. We
begin our discussion of Lyapunov exponents by examining simple one-dimensional
maps. Consider a general 1D map given by

xp+1 = f(xp)

x ∈ [0, 1]

where f is a function that maps xp onto xp+1. Without loss of generality we assume
that there is a periodic orbit of period p such that for a given starting point x0 we
have

xp = x0 with xp = fp(x0)

where the map f iterates the points through the orbit defined by (x0, x1, ..., xp).
We want to explore the stability of this orbit, therefore we define a small deviation
from the orbit, δ0, and Taylor expand to first order.

xp + δp = fp(x0 + δ0)

xp + δp = fp(x0) +
∂f p(x)

∂x

∣∣∣∣
x=x0

δ0

⇒ δp =
∂f p(x)

∂x

∣∣∣∣
x=x0

δ0

we can expand the partial derivative using the chain rule to get

∂f p(x)

∂x

∣∣∣∣
x=x0

=
∂f p(x)

∂f p−1(xp−1)

∂f p−1(xp−1)

∂f p−2(xp−2)
...
∂f (1)(x)

∂x

⇒ δp
δ0

=
∂f p(xp)

∂f p−1(xp−1)

∂f p−1(xp−1)

∂f p−2(xp−2)
...
∂f (1)(x)

∂x

⇒ δp
δ0

= lim
p→∞

∂f p(xp)

∂x

∂f p−1(xp−1)

∂x
...
∂f (1)(x)

∂x

we then let λ = ∂f
∂x

which allows us to write δp = λpδ0. Thus we have that

λp = lim
p→∞

∂f p(xp)

∂x

∂f p−1(xp−1)

∂x
...
∂f (1)(x)

∂x

h(x) = ln(λ) = lim
p→∞

1

p

∑
i

ln

∣∣∣∣∂f p∂x

∣∣∣∣
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where h(x) is the Lyapunov exponent at x. We also define a related term called
the Lyapunov number, L(x), to be

L(x) = lim
p→∞

(
|f ′(x0)|f ′(x1)|...|f ′(xn)|

) 1
p

For h > 0 we say that the orbit is unstable and deviation will grow exponentially
as the number of iterations increases, hence the system will exhibit exponential
divergence of particle trajectories. For h=0, as in the case of Hamiltonian systems,
we say that the orbit is superstable meaning that the deviation from the orbit will
remain fixed for all iterations. For the final case where h < 0, the orbit is stable
and any deviation from the orbit will go to zero as the iterations increase. To see
why this is so, we return to our equation relating δp to δ0, we have

δp = λpδ0

δp = epln(λ)δ0

Since p > 0, the growth or decay of the deviation depends on the sign of ln(λ),
i.e. the sign of h.

As an example of the calculation of a Lyapunov exponent for a 1D map consider
the 2x mod 1 map which is given by

xp+1 = 2xp mod 1

x ∈ [0, 1]

Using our previous notation for the general 1D map, the mapping function is given
by f(xp) = 2xp mod 1 and therefore the derivative with respect to xp is given by
f ′(xp) = 2. We note that the derivative is not defined at x = 1

2
due to the

discontinuity in the mapping at this point. With this we can then calculate the
Lyapunov exponent:

h = lim
p→∞

1

p

∑
i

ln

∣∣∣∣∂f p∂x

∣∣∣∣
h = lim

p→∞

1

p

∑
i

ln
∣∣2∣∣

h = lim
p→∞

pln
∣∣2∣∣
p

h = ln
∣∣2∣∣
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We see that the Lyapunov exponent is positive and therefore the system is chaotic.
As another example, consider the tent map which is given by

xp+1 =

{
2xp, xp ≤ 1

2

2(1− xp), xp >
1
2

x ∈ [0, 1]

For this map, due to the absolute value in the calculation of the Lyapunov ex-
ponent, we have that f ′(xp) = 2 for both xp ≤ 1

2
and for xp >

1
2
. Therefore the

Lyapunov exponent for the tent map is the same as the Lyapunov exponent for
the 2x mod 1 map, that is h = ln|2|, thus the tent map exhibits chaotic behavior
as well.

Before we proceed to the generalization of the Lyapunov exponent to higher
dimensions, it is important to note that the Lyapunov exponent is a local defini-
tion of chaos since it is defined independently at each point in the phase space.
Therefore a given map can have regions of chaotic motion and regions of stability.
Our previous two examples had the same Lyapunov exponent for all points in the
1D phase space. Many systems, especially higher dimensional systems, exhibit
regions of chaotic motion and regions of stable periodic motion. Some of the best
examples of this are Hamiltonian systems that are slightly perturbed. In Hamil-
tonian systems, particle orbits are constrained to follow the surface of a resonant
tori defined by the energy of the particle. When a slight perturbation is made
to the system most of the resonant tori survive and particles continue to exhibit
periodic motion along the surface of the tori. As the strength of the perturbation
increases, the tori become more and more distorted and eventually overlap leading
to the destruction of the tori and chaotic motion as the particles are no longer
constrained to a single phase space surface (torus) but are capable or wandering
far from their original orbits. However, despite most of the tori being destroyed,
some will remain intact, meaning a particle orbit along the surface of one of these
surviving tori will remain on the surface of that torus. Therefore we have the men-
tal picture of a phase space that has some regions of fixed, stable periodic orbits
and some regions with chaotic motion thus exemplifying the the local nature of
the Lyapunov exponent.

The previous discussion leads naturally into a complication that arises when
moving to higher dimensions. Not only do we need to consider the position in phase
space at which to evaluate the Lyapunov exponent but, in higher dimensions, we
also need to consider the direction in which we evaluate the Lyapunov exponent.
This can lead to the situation where, at a given point in phase space, the Lyapunov
exponent may be positive in one direction and negative in the other direction. This
corresponds to a stretching along one dimension and squeezing along the other
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dimension with the overall dynamics of the particle trajectories determined by the
competition of these stretching and squeezing components.

With this in mind, we now discuss the generalization of the Lyapunov exponent
calculation to higher dimensions for discrete mappings (Lyapunov exponents for
continuous flows are a natural extension of the following discussion). Consider the
N-dimensional map, M, such that

xp+1 = M(xp)

As before we assume there is a periodic orbit of period p such that for a given
starting point, x0, we have

xp = x0 with xp = Mp(x0)

To investigate the stability of the orbit we consider a small deviation away from
the orbit in the direction of the tangent vector y0. The tangent vector will evolve
after each iteration according to the equation

yp+1 = DM(xp) · yp

where DM is the Jacobian Matrix for the system and is defined by

DM(x) =


∂M(1)

∂x(1)
∂M(1)

∂x(2)
. . . ∂M(1)

∂x(N)

∂M(2)

∂x(1)
∂M(2)

∂x(2)
. . . ∂M(2)

∂x(N)

...
...

...
...

∂M(N)

∂x(1)
∂M(N)

∂x(2)
. . . ∂M(N)

∂x(N)


Looking at the mapping of the initial tangent vector y0 we have

yp = DMp(x0) · y0

with
DMp(x0) = DMp−1(xp−1) ·DMp−2(xp−2) . . .DM(x0)

We then note that the unit vector for the initial displacement is given by u0 = y0

|y0|
and we use this to define the Lyapunov exponent as

h(x0,u0) = lim
p→∞

1

p
ln

( |yp|
|y0|

)
⇒ h(x0,u0) = lim

p→∞

1

p
ln
∣∣DMp(x0) · u0

∣∣
Note here the key difference between 1D and higher dimensions regarding the
dependence of the Lyapunov exponent on the direction via the dependence on u0.
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One might think at this point that Lyapunov exponents do not provide any
useful generalization for a chaotic system since the Lyapunov exponent can obtain
a different value for each phase space point on the attractor as well as for different
directions at the given point. However there is a manipulation that we can peform
followed by the use of Oseledecs multiplicative ergodic theorem which will allow
us to define a single Lyapunov exponent for nearly all phase space points in the
basin of attraction of a strange attractor.

To start the manipulation, we take the limit that p is large and define the
matrix, Hp(x0) to be Hp(x0) = [DMp(x0)]

†[DMp(x0)] then the equation for the
Lyapunov exponent becomes

h(x0,u0) ' h̄p(x0,u0) =
1

p
ln
∣∣DMp(x0) · u0

∣∣
⇒ h̄(x0,u0) =

1

2p
ln
∣∣u†0 ·Hp(x0) · u0

∣∣
where h̄p(x0,u0) is an approximation to the actual Lyapunov exponent. Now the
matrix Hp(x0) is a real non-negative, Hermitian matrix and therefore it has real
non-negative eigenvalues as well as real eigenvectors. Let us then choose u0 such
that is lies in the directions of one of the eigenvectors of Hp. There will N of these
eigenvectors which will produce N Lyapunov exponents given by

h̄jp =
1

2n
ln(Hjp)

In the limit as p → ∞ these approximations to the Lyapunov exponents, h̄jp,
converge to the actual Lyapunov exponents hj. We then order the Lyapunov
exponents from largest (most positive) to smallest (zero or most negative)

h1(x0) ≥ h2(x0) ≥ · · · ≥ hN(x0)

With this ordering we proceed by changing our assumption of u0. Previously we
had chosen u0 to be coincident with one of the eigenvectors of Hp. Now we place
no restriction on u0 and we assume that it is in an arbitrary direction. This means
that u0 can be expressed as a linear combination of the eigenvectors, ej, of Hp

since the eigenvectors span the space and are assumed to be normalized,

u0 =
N∑
j=1

ajej

⇒ u†0 ·Hp(x0) · u0 =
N∑
j=1

a2j exp[2ph̄jp(x0)]
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For very large p the sum will be dominated by the largest Lyapunov exponent
due to the exponential dependence. Since we ordered the Lyapunov exponents in
decreasing order, the dominate Lyapunov exponent is given by h1(x0). Thus for
an arbitrary choice of u0 and for sufficiently large p we have the surprising result
that

h(x,u0) = h1(x0)

Now we use Oseledec’s multiplicative ergodic theorem which states that the if
there is an ergodic measure µ of a strange attractor then the Lyapunov exponents
obtained with respect to that measure are the same for all x0 up to a set of mea-
sure 0 (hence the previous emphasis that nearly all the points in the basin of
attraction can be assigned a single Lyapunov exponent). Therefore our previous
manipulation shows that at a given point, even thought there are possibly different
Lyapunov exponents for different choices of direction, to first order for an arbitrary
direction, the largest Lyapunov exponent will dominate the dynamics. Then Os-
eledec’s theorem shows that this largest Lyapunov exponent is the same Lyapunov
exponent for nearly all x0 within the basin of attraction of the strange attractor.
Hence we can very readily assign a single value of the Lyapunov exponent for a
given strange attractor in a chaotic system. Continuing to use the Baker’s Map
as our canonical example we now calculate the Lyapunov exponent for this map.
For reference the Baker’s Map is given by

xp+1 =

{
λaxp, yp < α

(1− λa) + λbxn, yp > α

yp+1 =

{
yp/α, yp < α

(yp − α)/β, yp > α

with β = 1−α and λa +λb ≤ 1. To calculate the Lyapunov exponent we calculate
the terms for the matrix DM:

∂xp+1

∂xp
=

{
λα, yp < α

λβ, yp > α

∂xp+1

∂yp
= 0

∂yp+1

∂xp
= 0

yp+1

yp
=

{
1/α, yp < α

1/β, yp > α

Hence the matrix Hp = DM† ·DM, is given by

H(x) =

[
(λp1a λ

p2
b )2 0

0 (λ−p1a λ−p2b )2

]
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where p1 is the number of times the orbit falls below the horizontal line y = α
and p2 is the number of times the orbit falls above the line. The total number
of iterations is then given by p = p1 + p2. From the structure of the matrix we
clearly see that the eigenvectors are along the x-dimension and the y-dimension.
Evaluating the Lyapunov exponent along these two dimensions then gives us

h(x0, x̂) = lim
p→∞

(
p1
p
ln(λa) +

p2
p
ln(λb)

)

h(x0, ŷ) = lim
p→∞

(
p1
p
ln

(
1

α

)
+
p2
p
ln

(
1

β

))
This can be further simplified by noting that the quantity limp→∞ p1/p is the
natural measure for y < α and similarly the quantity limp→∞ p2/p is the natural
measure for y > α therefore

lim
p→∞

p1
p

= α

lim
p→∞

p2
p

= β

Thus the final forms of the Lyapunov exponents for the Baker’s Map are given by

hx = αln(λa) + βln(λb)

hy = αln

(
1

α

)
+ βln

(
1

β

)
This completes our general discussion of Lyapunov exponents. However, as

mentioned previously there is a connection between the geometric information
dimension and the Lyapunov exponents. This takes the form of the Kaplan-York
Conjecture which gives the fractal dimension of a strange attractor in terms of
the Lyapunov exponents. Recalling our ordering of the Lyapunov exponents from
largest to smallest, we then let K be the largest value such that

K∑
j=1

hj ≥ 0

In order words, this sum is summing up the maximum number of Lyapunov expo-
nents such that the sum still remains greater than or equal to zero (note that this
does not exclude negative Lyapunov exponents from the sum). We then define the
Lyapunov Dimension, DL, to be

DL = K +
1

|hK+1|

K∑
j=1

hj
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The Kaplan-York conjecture claims that the Lyapunov Dimension is equal to the
Information dimension for attractors that are loosely defined as ”typical attrac-
tors”. This result is fairly powerful since it allows for the calculation of a very
important dimension of the attractor (information dimension) via a calculation of
the more tractable Lyapunov exponents. To demonstrate the Kaplan-York con-
jecture we once again turn to the Baker’s Map. If we assume that λa = λb in the
Baker’s map, then the Lyapunov dimension is given by

DL = 1 +
hy
hx

DL = 1 +
αln(1/α) + βln(1/β)

(α + β)ln(λ)

but since α + β = 1 we have that

DL = 1 +
αln(α) + βln(β)

|ln(λ)|
= D1

which is precisely the information dimension for the Baker’s map that was derived
in a previous lecture.

Metric Entropy

We now turn our attention to the discussion of entropy as another tool for
quantifying chaotic systems. The entropy used here for dynamical systems is
called the metric entropy or the Kolmogorov-Sinai entropy, after it originators.
Our goal will be to derive the standard form of the metric entropy and then show
its relation to the Lyapunov exponents. Our formulation for the metric entropy is
based on the Shannon formulation for entropy where HS is the uncertainty that an
event will result if there are r different possibilities with probability (p1, p2, . . . pr).
Then the Shannon entropy is defined as

HS =
r∑
i=1

piln

(
1

pi

)
In a similar way for dynamical systems we will derive the metric entropy denoted,
h(µ), using the invariant probability measure µ of the dynamical system. Similar
to statistical mechanics, we start by defining a bounded region, W , of phase space
and then we define a partition such that W is divided into r disjoint parts.

W = W1 ∪W2 ∪ . . .Wr
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Then we use this partition to define the entropy function using the Shannon en-
tropy form

H(Wi) =
r∑
i=1

µ(Wi)ln

(
µ(Wi)

−1
)

Our objective is to construct a series of partitions {W (n)
i } that are finer and finer

(set size gets smaller and smaller). In order to do this we start with the original
partition and take the inverse map of that set M−1(Wk). Then we create the n2

intersectionsWj∩M−1(Wk) by iterating through all the j-w pairs with j = 1, 2, . . . r
and k = 1, 2, . . . r. The intersections of these two sets forms out next partition,
{W (2)

i }. Notice that in doing this process we have taken a set with r elements and
intersected it with another set of r elements to form a set that has r2 elements and
is therefore a finer partition than either of our starting partitions. This process
can be repeated n times until we have the set with rn elements

{Wi(n)} = Wi1 ∩M−1(Wi2) ∩M−2(Wi3) ∩ · · · ∩M−(n−1)(Win)

Using this nth iteration we can then write the entropy equation using the Shannon
form as

h(µ, {Wi}) = lim
n→∞

1

n
H({W (n)

i })

The metric entropy itself is obtained when we maximize the equation over all the
possible initial partitions. Therefore the metric entropy, h(µ), is given by

h(µ) = sup
Wi

h(µ,Wi)

To show a calculation of the metric entropy we once again returning to our dis-
cussion of the Baker’s Map. For the Baker’s map, we use the following partition
as the first partition of the phase space

H({Wi}) = αln(1/α) + βln(1/β)

It can then be shown that successive processes of creating finer and finer partitions
results in {W (n)

i } such that

H({W (n)
i }) = n

(
αln(1/α) + βln(1/β)

)
= nH({Wi})

Substituting this result into the equation for the metric entropy gives us

h(µ, {Wi}) = lim
n→∞

1

n
n
(
αln(1/α) + βln(1/β)

)
h(µ, {Wi}) = αln(1/α) + βln(1/β)
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As noted previously, in order to obtain the actual metric entropy we must maximize
the entropy equation over all possible {Wi}. However it can be shown that our
original choice for the initial partition above is in fact the partition that maximum
the entropy equation, therefore the metric entropy for the Baker’s Map is given by

h(µ) = αln(1/α) + βln(1/β)

Upon deriving this metric entropy we notice immediately that it is identical to the
Lyapunov exponent for the y-dimension which was derived in the previous section:

h(µ) = hy = αln(1/α) + βln(1/β)

Once might then ask if this is a coincidence or indicative of a more general con-
nection between Lyapunov exponents and metric entropy. It turns out that it has
been proven that the metric entropy is at most the sum of the positive Lyapunov
exponents of the chaotic system

h(µ) ≤
∑
hi>0

hi

For the Bakers map there is only one positive Lyapunov exponent and therefore
the equality holds rather than the inequality. In addition it has also been shown
that for a Hamiltonian system the metric entropy is exactly equal to the positive
Lyapunov exponents.

h(µ) =
∑
hi>

hi

Thus in conclusion we have seen that there is a strong connected between the
dimension, Lyapunov and entropy descriptions of a chaotic system and, generally
speaking, knowledge of one of these descriptions allows us to determine some
information about the other two.
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