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Introduction

Over the last couple of lectures, we have been introduced to reaction-diffusion systems, i.e.
systems in which a set of scalar fields that undergo interconversion processes, governed by
rates, while spreading over space with the corresponding diffusion coefficients. Moreover, we
learned that, for a pair of reacting fields, a difference in such diffusion coefficients produces
instabilities that eventually lead to pattern formation. It becomes then interesting to look at
the way states propagate in such systems.

A typical reaction-diffusion system is described by equations of the form:

∂c

∂t
= γF (c) +D∇2c.

When F (c) is non -linear, the system depicts layers of fixed points. Said layers are connected
through fronts whose motion describes the propagation from unstable fixed points to stable
ones (Figure 1).

The Fisher-KPP equation

At this point, it becomes relevant to ask for the factors determining the structure of the fronts,
i.e. their speed, width, and stability. In order to do so we will study the simplest non-linear
reaction diffusion equation, the Fisher-KPP (Kolmogorov-Petrovski-Puskinov):

∂P

∂t
= γP − bP 2 +D

∂2P

∂x2
(1)

The reaction part of the equation can be understood by taking the predator-prey model:

u̇ = auv − bu (predator)

v̇ = cv − duv (prey),

and enslaving the prey to the predator (u = αv). In this way, the set of equations adopts the
form of equation (1). Moreover, with the change of variable P ∗ = b

γ
P , equation (1) becomes:

∂P

∂t
= γP (1− P ) +D

∂2P

∂x2
. (2)

Where the * has been dropped for clarity. By ignoring the diffusion term, it is possible to
identify the logistic differential equation, i.e. the continuous realization of the logistic map:
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Figure 1: Plots of solutions of the Time Dependent Ginzburg Landau equation at different
times showing the front moving from the unstable fixed points P = ±1 to the stable one P = 0

xn+1 = axn(1−xn). Both analog models yield to the conclusion that the underlying mechanism
is that of the growth of a self-limiting reproductive population. In fact, the equation including
diffusion was first suggested by Ronald Fisher in 1937 as a deterministic version of a stochastic
model for the spatial spread of a favored gene in a population.

It can be easily proven that P0 = 0 and P0 = 1 are fixed points of equation (2). For γ purely
imaginary they both are centers of neutral stability, whereas for γ > 0, P0 = 0 is unstable and
P0 = 1 is stable (Fig 2). We will concern ourselves to the second case, corresponding to
populations, therefore negative values of P are physically meaningless. Consequently, the wave
front traveling solutions should inhabit the 0 ≤ P ≤ 1 interval.

Traveling front analysis

Since we are looking for propagating solutions, we try the form:

P = P (x− ct).

With which equation (2) becomes:

P ′′ + c
D
P ′ + γ

D
P (1−Q) = 0, (3)

with boundary conditions
P (−∞) = 0 P (∞) = 1.

As we shall see, there is a variety of ways to analyze this problem.
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Figure 2: Fixed points of the logistic equation (a) Parametric plot showing the complex plane
as function of the initial conditions of the logistic equation with imaginary coefficient. The
fixed points are centers thus show marginal stability. (b) Solutions of the logistic equation with
real coefficient at several initial conditions. P = 0 is an unstable fixed point whereas P = 1 is
stable

Dynamical system

Upon a closer look, equation (3) is reminiscent of an equation of motion with damping:

−DP ′′ −cP ′ = −δu(P )

δP
l

inertia

l
friction

l
force

mẍ +γẋ = −δu (x)

δx

With this simile in mind it is possible to argue that just as the damping balances the force
in the equation of motion, the role of the speed is to stabilize the transition in the moving
frame. In the same way that in a damped periodic mechanical system there is a threshold for
the damping over which the system will not reach a given point (fig 3), we can expect that
there will be a set of requirements to ensure the transition between fixed points. Furthermore,
the analogy can be pushed to the extent that the front propagation can be studied in the same
way as damped systems are by exploring the trajectories on a phase plane. In this situation
we will inquire the phase plane (P,Q) where Q = P . Therefore:

Q′ = − c
D
Q+ γ

D
P (P − 1) ,

and the trajectories are of the form:

dQ

dP
=
−cQ+ γP (P − 1)

DQ
. (4)

This expression has two singular points at (0, 0) and (1, 0), evidently corresponding to the
steady states. Linearization around the singular points yields to:

d

dz

(
Q
P

)
=

(
−c −γ
D 0

)
(0,0)

(
Q
P

)
d

dz

(
Q
P

)
=

(
−c γ
D 0

)
(1,0)

(
Q
P

)
,
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Figure 3: Damped periodic system. If the surface is rough enough the ball will never reach the
same height unless pushed.

where z = x− ct.
These systems are characterized by the eigenvalues:

λ±(0, 0) =
−c±

√
c2 − 4Dγ

2
λ±(1, 0) =

−c±
√
c2 + 4Dγ

2
. (5)

This result indicates that the singular point (0,0) is stable. And depending upon whether
c2 > 4D or c2 < 4D the point corresponds to a node or a spiral respectively. On the other
hand (1,0) is a saddle point (figure 4) It becomes clear that, around the origin, the minimum
possible velocity is cmin = 2

√
Dγ The former analysis concludes that trajectories from (0,0)

to (1,0) are found as long as P > 0, P < 0 and c > 2
√
Dγ (formally there are also trajectories

for P < 0, but as discussed before, this situation is unphysical).

Leading edge

An alternative to the phase plane analysis can be realized by assuming that the propagation of
the front is governed by its leading front. Near to the unstable fixed point P ≈ 0, which means
that P 2 is negligible, and equation (2) adopts the linear form:

∂P

∂t
= γP +D

∂2P

∂x2
. (6)

Considering a traveling wave solution:

P (x, 0) = Ae−αx

P (x, t) = Ae−α(x−ct),
(7)

yields:
αc = γ +Dα2. (8)

Therefore:
Dα2 − cα + γ = 0

α =
c±
√
c2−4Dγ
2D

,
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Figure 4: Phase plane trajectories for equation (3)

The leading front structure holds for c > cmin = 2
√
Dγ, which is consistent with the previous

result.
This approach also allows to determine the width of the kink, which is given by:

∆x(c) = α−1 =
2D

c±
√
c2 − 4Dγ

,

or evaluated at cmin:
∆x(cmin) =

√
D/γ.

This result implies that the front can be sharpened by either decreasing the diffusivity or
increasing the rate of the local instability.

On the other hand, marginal analysis with the dispersion relation (8) yields:

c =
d (αc)

dα
0 = Dα− γ

α

α =

√
γ

D

Then:

∆x =

√
D

γ
c = 2

√
Dγ. (9)

It is worth noting that the relation between the timescale,τ , and the length scale, L, of the
transition:

1

τ
∼ c

L
∼
√
γ
D

L2
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Figure 5: Solution with compact support propagating over time

corresponds to the geometric mean of the time scales involved in both, the diffusion and the
local process.

Before moving on to the study of the stability, it is worthy to mention that in 1937 Kol-
mogorv, Petrovskii and Puskinov showed that a solution P (x, t) subject to initial conditions
such that P (x, 0) is compactly supported, i.e.

P (x, 0) = P0(x) ≥ 0; P0(x) =

{
1 x ≤ x1
0 x ≥ x2

, (10)

with x1 < x < x2 and P0(x) a continuous function, evolves to P (x − cmint, t) (Fig ??). This
is a surprising fact since the front selected is the one with marginal stability. Nevertheless,
according to the previous analysis, for every other set of initial conditions, the evolution of the
system depends critically on the behavior of P (x, 0) as x→ ±∞.

Front stability

According to the discussion in the last paragraph of the former section, the front is highly
susceptible to far field effects whenever it does not fulfill (10). This brings up the question for
stability under local perturbations.

In order to investigate the stability of the front, we will perform a change of variable such
that P (x, t)→ P (z, t) with z ≡ x− ct. The Fisher-KPP equation is then written in the form

∂P

∂t
= γP (1− P ) + c

∂P

∂z
+D

∂2P

∂z2
. (11)

The local perturbations P̃ (z, t) can be introducedby writing solitions in the form

P (z, t) = P0(z) + εP̃ (z, t).

Plugging this ansatz in equation (11) yields:

ε
∂P̃

∂t
= γ

(
εP̃ − 2εP0P̃ − ε2P̃ 2

)
+ cε

∂P̃

∂z
+Dε

∂2P̃

∂z2
.
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By keeping only the terms up to first order in ε, the last expression becomes

∂P̃

∂t
= γP̃ (1− 2P0) + c

∂P̃

∂z
+D

∂2P̃

∂z2
. (12)

The perturbation can be written as

P̃ (z, t) = p̃(z)e−λt,

with which (12) turns to

D
d2p̃

dz2
+ c

dp̃

dz
+ [γ (1− 2P0) + λ] p̃ = 0, (13)

this is an eigenmode equation. The stability of the system requires λ > 0. Keeping in mind
that P0(z) is solution of the original equation, let us consider consider an infinitesimal shift
P0(z + δz) and plug it into (2):

0 = D
d2

dz2
(P0 + δzP ′0) + c

d

dz
(P0 + δzP ′0) + γ (1− P0 − δzP ′0) (P0 + δzP ′0) +O(δz2)

= δz

[
D
d2P ′0
dz2

+ c
dP ′0
dz

+ γ (1− 2P0)P
′
0

]
+

((((((((((((((((

D
d2P0

dz2
+ c

dP0

dz
+ γP0 (1− P0) +O(δz2)

= D
d2P ′0
dz2

+ c
dP ′0
dz

+ γ (1− 2P0)P
′
0

(14)

The remaining equation is no other than (13) with λ = 0 and the solution p̃(z) = P ′0(z). This
means that λ = 0 is a translational mode.

To figure out the possible eigenvalues, we write

p̃(z) = q̃(z)e−
cz
2D .

Evaluating (13) with this ansatz yields

Dq̃ +

{
γ [1− 2P0(z)] + λ− c2

4D

}
q̃ = 0.

Multiplying this equation by q̃′(z) and integrating, allows to isolate λ as

λ =
c2

4D
− γ +

2γ
∫
P0(z)q̃(z)q̃′(z)dz −

∫
q̃′dq̃′∫

q̃dq̃
(15)

Demanding the boundary condition that q̃(±L) = 0 for some appropiate value of L, the
requirement of the positive eigenvalues can be fulfilled only if

c2 > 4Dγ.

This result is, again, consistent with what we have gotten so far.

Asymptotic analysis of non-linear problem

Up to this point, the leading edge approach has been very useful. However there is still a lack
of validation for its application in non-linear problems. In order to fill in this gap we will test
whether this approach leads to analytic expressions for the non-linear front.

7



Using the standard singular perturbation technique, we perform a change of variable in the
neighborhood of the front. Let P (z = 0) = 1/2, and introduce the transformation

ξ =
z

c
= ε1/2z; P (z)→ g(ξ),

with which the normalized Fisher equation becomes

ε
d2g

dξ2
+
dg

dξ
+ g (1− g) = 0,

subject to
g(−∞) = 1, g(∞) = 0, g(0) = 1/2, 0 < ε ≤ c−2min

This equation can be solved with a regular perturbation series in ε:

g(ξ; ε) =
∞∑
n=0

εngn(ξ) (16)

For the zeroth order term:

dg0
dξ

= −g0 (1− g0)

g0(−∞) = 1, g0(∞) = 0, g0(0) = 1/2
(17)

Which yields
dg0

g0 (1− g0)
=−dξ∫ ( 1

g0
+

1

1− g0

)
dg0=−ξ + C

ln

(
g0

1− g0

)
=−ξ + C

∴ g0=
C

C + eξ
=

1

1 + ez/c
.

(18)

While for the first order term:

dg1
dξ

+ (1− 2g0) g1 = −d
2g0
dξ2

gi(±∞) = gi(0) = 0
(19)

Which yields
dg1
dξ
− g”0

g′0
g1=−g”0

g1=
ez/c

(1 + ez/c)
2 ln

[
4ez/c

(1 + ez/c)
2

]
.

(20)

And so on.
An interesting feature of the result is that the asymptotic behavior is the least accurate for

the marginal velocity c = 2. Novertheless the truncation to first order is an excellent fit to the
exact numerical solution.

Finally let us analize the relative steepness. The gradient of the solution at z = 0 is

−P ′(0) =
1

4c
+O

(
1

c5

)
(21)

This result implies that the faster the front the less steep it is.
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