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1 Introduction

So far, we have used the envelope formalism to investigate pattern formation in nonlinear
systems. Using the assumptions of near marginal stability and minimal symmetry we have
derived the possible pattern base states, and then determined secondary roughening or “tex-
tures” on thosee base states. This procedure utilizes linear instability theory. For example,
the equation

γτ0 = (Ra− Racrit)− ε20(q − q0)2 (1)

was used to model the base state near marginality in Rayleigh-Bénard convection, which
were roughened by the Eckhaus and zigzag instabilities.

In this chapter, we seek a “deeper” formalism. Recall the phase-winding solution to the
Newell-Whitehead equation: the dynamics were governed by the equations

∂tφ =
ε20
τ0

(
∂2xφ+

2∂x|A|∂xφ
|A|

)
(2)

τ0∂t|A| =
(
r − ε20(∂xφ)2

)
|A|+ ε20∂

2
x|A| − g0|A|3 (3)

and using φ = δkx+ φ̃, we observe that setting ε20δk
2 ∼ r eliminates the amplitude growth.

Moreover (from Eq. 2), the phase evolves diffusively and, at large length scales, slowly. In
particular, the amplitude is effectively slaved to phase; the formation of textures is rooted
in the phase evolution.

Our approach, then, will be to examine pattern formation by applying slowly varying per-
turbations in phase and exploiting ordering at long wavelengths. This approach goes beyond
linear perturbation theory, which was used to derive the Eckhaus and zigzag instabilities.

2 Phase diffusion formalism

This leads us to the phase diffusion formalism introduced by Pomeau and Manneville (1979)
[2], a sort of nonlinear eikonal theory approach. The key idea will be to replace invariance
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under a uniform phase shift with approximate invariance under a weakly-varying phase shift
to exploit long wavelength ordering.

We seek to characterizing pattern formation by determining effective (not necessarily
positive) phase diffusion coefficients D‖ and D⊥ so that

∂tφ = D‖∂
2
xφ+D⊥∂

2
yφ+ h.o.t. (4)

In particular, D‖ < 0 leads to the Eckhaus instability and D⊥ < 0 leads to the zigzag
instability.

Let us proceed by considering the Swift-Hohenberg model

∂tW = rW − (∂2x + q20)2W −W 3, (5)

where r = Ra − Racrit is the distance to threshold and q0 is the marginal wavevector; take
r > 0. Fourier transforming Eq. 5 in space and linearizing, we obtain

∂tW =
(
r − (k2 − q20)2

)
W (6)

and, assuming r is small, we see that the marginal solution is unstable against perturbations
with wavevector k = q0 + δk, where |δk| <

√
r/2q0.

For the remainder of this discussion, let us set q0 to unity. Demanding δtW = 0, one
finds that Eq. 5 has the periodic stationary solution

W0(x) = W (1) sin(x) +W (3) sin(3x) +O(r2), (7)

where W (1) =
√

4
3
(r − 4δk2) and W (3) = (W (1))3/256.

This is the base state. We first make the uniform translation W0(x) → W0(x + φ).
Expanding, we have

W0(x+ φ) = W0(x) + φ ∂xW0 +
1

2
φ2∂2xW0 + . . . . (8)

For ease of notation let F be the Swift-Hohenberg operator

F(W0) ≡ rW0 − (∂2x + 1)2W0 −W 3
0 (9)

and let

Λ0 ≡
δF
δW

∣∣∣∣
W0

= r − (∂2x + 1)2 − 3W 2
0 . (10)

Eq. 5 is translation invariant, so we Taylor expand F and demand the stationary Swift-
Hohenberg equation be satisified, i.e.

∂t (W0(x) + φ ∂xW0 + . . . ) = 0 = F(W0 +φ ∂xW0 + . . . ) = F(W0) + Λ0(φ ∂xW0) + . . . . (11)

By definition, F(W0) = 0, so it follows that

∂xF(W0) = 0 =
δF
δW

(∂xW0) = Λ0(∂xW0) (12)
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and hence ∂xW0 is a translation mode of Λ0 with eigenvalue 0, belonging to the kernel of Λ0.
(Recall that the kernel of Λ0 is the set of sufficiently smooth functions annihilated by Λ0—
that is,

ker Λ0 = {f ∈ C4 : Λ0(f) = 0}.)

Using Eq. 10, F(W0) = 0, and the fact that φ is uniform, we have

∂tφ ∂xW0 = φΛ0(∂xW0) = 0, (13)

and we see that the uniform phase must not evolve in time.
We now repeat the above, but allow the phase to vary slowly in space and time: we take

φ = φ(x, y, t). The spatial dependence will accommodate phase clustering. W0(x + φ) is no
longer an exact solution to Eq. 5, but the error is small and approaches zero for small ∂xφ,
which is to say at long wavelengths.

Let us then look for solutions of the form

W (x, y, t) = W0(x) + φ(x, y, t) ∂xW0(x) +W1(x, y, t) +W2(x, y, t), (14)

where W1 and W2 are small (at long wavelengths) corrections. We first determine W1. We
have to first order

∂t (W0 + φ ∂xW0 +W1) = ∂tφ ∂xW0 = F(W0) + Λ0(φ ∂xW0 +W1), (15)

whence one finds after some algebra (carefully noting that Λ0 now acts on both φ and ∂xW0)
that

Λ0W1 = ∂tφ ∂xW0 + g(x)∂xφ, (16)

where
g(x) = 4

(
∂2x + 1

)
∂2xW0. (17)

We want to find W1 satisfying Eq. 16. However, such a solution is not guaranteed to exist.
We apply a solvability criterion known as the Fredholm alternative, named for Swedish
mathematician Erik Ivar Fredholm. Informally:

Theorem 1 (Fredholm alternative) Let L be a linear differential operator. Given a func-
tion f , consider the equation

Lu = f. (*)

Then there exists a solution u to (*) if and only if f ∈
(
kerL†)⊥, which is to say 〈f |v〉 = 0

for all v such that L†v = 0.

Here, we use the bra-ket notation for the inner product. In this case, Λ0 is self-adjoint so
Λ†

0 = Λ0. We already determined that ∂xW0 is in the kernel of Λ0, so, invoking the Fredholm
alternative, we must have

〈∂xW0|∂tφ ∂xW0〉 = 0 (18)

leading to the trivial lowest-order equation

∂tφ = 0. (19)
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We cannot treat φ ∂xW0 as fast-varying only. To make progress, make explicit the dependence
of W1 on ∂xφ and set

W1 = W
(0)
1 + ∂xφW̃1(x); (20)

here W̃1(x) encodes the slow variation in W . Plugging into Eq. 16, we find

Λ0(W̃1) = g(x), (21)

which can be solved to find W̃1. We now can continue to second order (in general, we could
continue to arbitrary order in ∂xφ) in the phase slope, and via a similar approach for W2 we
find

Λ0W2 = ∂tφ ∂xW0 + ∂2xφ
[
4(∂2x + 1)∂xW̃1 + 2(3∂2x + 1)∂xW0

]
. (22)

We can now invoke the Fredholm alternative again, and this time we arrive at the phase
diffusion equation

∂tφ = D‖∂
2
xφ+D⊥∂

2
yφ. (23)

The effective phase diffusion coefficients are given by

D‖ =
〈∂xW0|4(∂2x + 1)∂xW̃1 + 2(3∂2x + 1)∂xW0〉

〈∂xW0|∂xW0〉
= 4

(
r − 12δk2

r − 4δk2

)
(24)

and

D⊥ =
∂xW0|2(∂2x + 1)∂xW0〉
〈∂xW0|∂xW0〉

= δk − (r − 4δk2)2

1024
. (25)

Demanding D‖ < 0 and D⊥ < 0 gives us the conditions for the Eckhaus and zigzag
instabilities, respectively.

We have thus derived classical secondary instabilities via a nonperturbative, structural
approach based on scalar products and symmetries of exact solutions to the Swift-Hohenberg
equation above threshold. This is in contrast to the envelope approach, which used linear
perturbation theory. We also obtain a small correction (the first term in the LHS of Eq. 25)
to the envelope theory result for the zigzag instability threshold.

3 Nonlinear phase dynamics

We now seek to determine nonlinear terms in the phase evolution equation. The structure of
the equation can be determined by first noting that ∂tφ should be a function of derivatives
of φ only (and not the magnitude of φ), and then demanding overall invariance under the
inversion symmetry

x→ −x
y → −y
φ→ −φ,

whence we deduce that the lowest-order terms are

∂tφ = D‖∂
2
xφ+D⊥∂

2
yφ−K∂4xφ+ g∂xφ ∂

2
xφ+ . . . . (26)
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Similar to the Kuramoto-Sivashinksy equation, we take K > 0 since D‖ and D⊥ can be
negative. We wish to obtain the coupling g. To do so, let us consider the Eckhaus problem
and ignore the y-direction. We have

∂tφ = D‖∂
2
xφ−K∂4xφ+ g∂xφ ∂

2
xφ. (27)

Put φ = δk
k

+ φ̃. Here φ̃ represents the phase for a structure with a perturbation k → k+ δk.
Plugging into Eq. 27, we obtain

∂tφ̃ = D‖∂
2
xφ̃−K∂4xφ̃+ g

δk

k
∂2xφ̃+ g∂xφ̃∂

2
xφ̃. (28)

Collecting coefficients, we find that

D‖(k + δk) = D‖(k) + g
δk

k
. (29)

Comparing to the Taylor expansion D‖(k + δk) = D‖(k) + δk
dD‖
dk

+ . . . , we conclude

g = k
dD‖

dk
. (30)

4 Phase dynamics of convection rolls: eikonal theory

of textures

Let us now apply our new method of looking at textures to convection rolls. We seek to
describe texturing in convection rolls by determining the bending of isophase lines (contours
of constant phase) — in particular, their curvature and dilatation (Fig. 1). We note this
approach is similar to eikonal theory.

Figure 1: Sketch illustrating curvature and dilatation of sets of isophase lines. Artwork by R.
Heinonen

The patterns in the convection rolls are described by level lines in the vertical velocity
field W (x, y, t), or equivalently in the velocity field
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V (x, y, z, t) = V (u(x, y, t), z) (31)

where u = x + φ(x, y, t) is a generalized phase encoding the the horizontal dependence of
the velocity field. Note that V0 is periodic with period 2π/k0. We naturally wish to assume
φ is small; however, due to curvature, the phase can accumulate. Instead (again inspired
by eikonal theory) it makes sense to track the phase gradient. Thus we seek to describe the
pattern by determining k = ∇hu (∇h refers to a horizontal gradient).

Figure 2: Sketch of convection rolls. The patterns in the rolls are specified by variation in a phase
u(x, y, t) which encodes in horizontal dependence of the velocity fields. Artwork by P.H. Diamond

It is useful to define a “director field” (using terminology from liquid crystal physics; see,
for example, [3]) n̂ by

k = kn̂. (32)

k encodes the bending of the isophase lines: we have

∇h · k = ∇h(kn̂) = k∇h · n̂ + n̂ · ∇hk; (33)

the terms on the RHS represent local curvature and dilatation, respectively.
We now proceed with calculating the phase dynamics. We make the ansatz

∂u

∂t
+ vnn̂ · ∇u = 0 (34)

vn = −D‖n̂ · ∇h

(
k

k0

)
−D⊥∇h · n̂, (35)

where vn is the contour velocity. We check for consistency by plugging Eq. 34 into Eq. 33:

∂u

∂t
−D‖n̂ · ∇h

(
k

k0

)
(n̂ · ∇u)−D⊥∇h · n̂(n̂ · ∇u) = 0. (36)

Recalling that u = x+ φ, we have

∂xu = 1 + ∂xφ =
kx
k0

(37)
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where k0 is the wavevector at threshold and so k/k0 ' 1+∂xφ. We then have that n̂ ·∇u ' 1
and n̂ · ∇(k/k0) ' ∂2xφ. Noting additionally that ∇ · n̂ = ∂2yφ, we recover from Eq. 36 the
phase diffusion equation

∂tφ = D‖∂
2
xφ+D⊥∂

2
yφ (38)

and so our ansatz was consistent.
We now finally convert the above to a phase dynamics equation à la Cross and Newell

(1983) [4]:
τ(k)∂tũ+∇h · (kB(k)) = 0, (39)

where ũ = ku, and τ and B are a timescale and a phase flux, respectively, to be determined.
The phase equation can always be put into this form, which follows by considering the most
general rotationally invariant expression that is linear in gradients. We use the definitions
to rewrite this as

0 = τ∂tφ+∇h · (kn̂B(k))

= τ∂tφ+ kB(k)∇h · n̂ +
d

dk
(kB(k))n̂ · ∇k

= τ∂tφ+B(k)∂2yφ+
d

dk
(kB(k))∂2xφ,

valid for almost-parallel rolls. From this we can deduce explicit expansions

Figure 3: Typical plot of the flux kB(k) and τ (here A2). Here G(k) is the negative integral of the
flux. Figure “borrowed” from [4]; disregard the inset label of “Fig. 2,” for this is figure 3!
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D‖ = −1

τ

d

dk
(kB(k)) (40)

D⊥ = −1

τ
B(k). (41)

Dividing these equations through, we find

B(k)

D⊥
=

1

D‖

(
B(k) + k

dB

dk

)
(42)

and thus we arrive at an equation for the phase flux B:

dB

B
=
dk

k

(
D‖

D⊥
− 1

)
. (43)

Typical values of the flux kB(k) are presented in Fig. 3. This concludes our discussion
of patterns in standard convection.

5 Fixed-flux convection in long, thin systems

Figure 4: Sketch of the Rayleigh-Bénard convection problem. Artwork by P.H. Diamond

Up until now, we have been considering convection in a system whose boundary plates
are at fixed temperature, i.e. they are perfect conductors of heat. This is not necessarily
a very physically realistic assumption. More generally, we need only impose the boundary
conditions

χf
dTf
dz

= χs
dTs
dz

(44)

Tf = Ts, (45)

where the subscripts s and f refer to the solid plates and fluids, respectively, and χα is a
heat conductivity. Rayleigh-Bénard convection, then, assumes χs � χf . Let us now study

8



the opposite limit where the plates are perfect insulators. In this case, the heat flux Q and
temperature gradient dT

dz
are now fixed at the boundaries. Temperature fluctuations in the

fluid do not propagate into the solid, so writing T = T0 + θ, we have

∂θ

∂z

∣∣∣∣
z=0,1

= 0 (46)

where z = 0, 1 corresponds to the vertical boundaries. We also have that the Nusselt number
is equal to unity:

Nu =
Q

−χfdT/dz
= 1. (47)

Figure 5: Sketch of the fixed-flux convection problem. Artwork by P.H. Diamond

In Figs. 4 and 5 we compare the two convection problems. For this fixed-flux problem, we
restrict ourselves to limit of a long thin box (Lx � Lz) and strive to determine the structure
of patterns in x. We sketch the derivation, originally due to Chapman and Proctor (1980)
[5]. We start with the equations of motion [6]

∂∇2φ

∂t
− Pr Ra

∂θ

∂x
− Pr∇2∇2φ = {∇2φ, φ} (48)

∂θ

∂t
− ∂φ

∂x
−∇2θ = {θ, φ} (49)

where Pr and Ra are the Prandtl and Rayleigh numbers, respectively, φ is the stream function
(and so ∇2φ is the vorticity), θ is the normalized temperature, and {·, ·} refers to the Poisson
bracket

{f, g} =
∂f

∂x

∂g

∂z
− ∂g

∂x

∂f

∂z
.

We consider slowly-evolving, thin, weakly supercritical cells, and thus introduce a small
parameter ε and rescale

x→ ε2x

φ→ εφ

∂t → ε4∂t

Ra = Racrit + µ2ε2
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where µ measures the supercriticality of the fluid. Solutions for θ and φ are then sought in
powers of ε:

θ = θ0 + ε2θ2 + ε4θ4 + . . . (50)

φ = φ0 + ε2φ2 + ε4φ4 + . . . . (51)

At zeroth order one finds solutions of the form θ0 = f(x, t) and φ = Racritp(z)f ′(x, t);
f is the horizontal cell envelope and p(z) encodes the vertical structure of the cell. The
prime indicates a derivative with respect to x. Carrying the calculation to fourth order and
applying boundary conditions yields, after some work, the Chapman-Proctor equation for f :

∂tf + Aµ2f ′′ +Bf ′′′′ + C((f ′)3)′ +D(f ′f ′′)′ = 0. (52)

Note that A > 0 and B > 0 leads to the familiar situation of negative diffusion and positive
hyperdiffusion. The Chapman-Proctor equation gives a good description of the horizontal
dynamics for slightly supercritical, small-amplitude convection systems. A complete analysis
is beyond the scope of these notes, but note that in the case of identical boundary conditions
on the plates, symmetry requires D = 0 and, defining g = f ′, we can take the derivative of
Eq. 52 to find

∂tg + Aµ2g′′ +Bg′′′′ + C(g3)′′ = 0. (53)

This equation can be rescaled to take the form of the so-called Cahn-Hilliard equation [7],
which describes the phase separation dynamics of a binary mixture (see appendix). By solv-
ing this equation for a stationary state and studying the stability of the nonlinear solutions
(which involve elliptic integrals), Chapman and Proctor show that, for a periodic box, the
stable flow in the box consists of two flattened, counter-rotating cells (see Fig. 6).

Figure 6: Sketch of final state of fixed-flux convection. Two counter-rotating cells form. Artwork
by P.H. Diamond

A Appendix: Cahn-Hilliard equation

In its most familiar form, the Cahn-Hilliard equation may be written

∂tψ = D∇2
(
ψ3 − ψ + ε2∇2ψ

)
, (54)

where ψ can be understood as a concentration, D a diffusion coefficient, and ε a length scale.
The quantity in parentheses can be understood as a chemical potential µ. As mentioned
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above, this equation describes the dynamics of phase separation. It can be cast in the form
of a conservation law

∂tψ +∇ · J = 0, (55)

with the current identified as J = −D∇µ (à la Fick’s law).
The first two terms of µ can be thought of as coming from a free energy functional

F = a(T − Tc)ψ2/2 + bψ4/4 in the regime T < Tc.
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