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The passive convection of vector fields and scalar functions by a prescribed incompressible fluid
flow v(x, t) is considered for the case where v(x, t) is chaotic. By chaotic v(x, t) it is meant that typi-
cal nearby fluid elements diverge from each other exponentially in time. It is shown that in such
cases, as time increases, a convected vector field and the gradient of a convected scalar will general-
ly concentrate on a set which is fractal. The present paper relates the stretching properties of the
flow to the resulting fractal dimension spectrum. Motivation for these considerations is provided by
the kinematic magnetic dynamo problem (in the vector case) and (in the scalar case) by recent ex-
periments which demonstrate the possibility of measuring the fractal dimension of the gradient
squared of convected passive scalars.

I. INTRODUCTION BB +v.VB=B-Vv .
C}t

(4)

where v(x, t) is the fiuid velocity, then B and tb satisfy the
equations

dB =B.Vv
dt

(2a)

and

d =0,
dt

(2b)

following a fiuid element (i.e., dldt =dIt)t+v. V). We
assume that v(x, t) is determined by external dynamics,
such as stirring, thermally induced convection, etc. The
evolution of B and tb are assumed to have no influence on
v(x, t), which we henceforth treat as prescribed.

The vectors B and VP have the property that their
magnitudes grow due to local divergence of nearby fluid
elements. That ~B~ grows in proportion to the local
divergence follows from taking a linear variation of Eq.
(1):

d 6x/dt =5x.Vv,

which is the same as the equation for B, Eq. (2a). We
presume v(x, t) is a specified smooth function of x, and
we call the flow chaotic if (1) has ergodic regions with
positive Lyapunov exponent, h )0, where

h = lim I [~n5 (tx)~ /~5x(0)~] .

In Eulerian variables (2a) is

In this paper we consider the convection of a vector
field B(x, t) or a scalar function P(x, t) by a chaotic in-
compressible flow. ' That is, if x(t) denotes the trajectory
of a fluid element,

dx =v(x( t), t ),
dt

Equation (4) is the equation satisfied by the magnetic field
in an incompressible perfectly conducting fluid. In this
connection Eq. (4) has been studied with prescribed
v(x, t) by Finn and Ott, who were interested in the
singular nature of the high-conductivity limit of the kine-
matic dynamo problem. The kinematic dynamo prob-
lem may be stated as follows: given a prescribed flow of a
conducting fluid, will a small seed magnetic field grow ex-
ponentially with time? If the answer is yes, then the flow
tends to generate a magnetic field from small initial mag-
netic perturbations. Considering the astrophysical medi-
um to be a flowing plasma, the kinematic dynamo prob-
lem is of basic interest in that it addresses the question of
tvhy magnetic fields occur in the universe (e.g. , in stars,
interplanetary, interstellar, and intergalactic space). In
Refs. 2 and 3 it was shown that three-dimensional chaotic
flows generally yield dynamos in the high-conductivity
limit and that the magnetic flux tends to concentrate on a
fractal set. What occurs is that the magnetic field follow-
ing a typical fluid element will tend to grow exponential-
ly. Some fluid elements, however, will have magnetic
field growth which is larger than others. As a result of
this nonuniform growth, as time proceeds, the largest
magnetic field vectors will be contained in a smaller and
smaller volume of space. In the zero-resistivity case and
the limit t ~ ac the volume of the set containing most of
the magnetic flux shrinks to zero, and this limit set is
highly singular in nature. In fact, it is a fractal set
characterized by a noninteger dimension (actually, a
spectrum of dimensions as described in Sec. II). The oc-
currence of fractal attracting sets is a well-known proper-
ty for nonconservative flows in phase space (strange at-
tractors). Here a time asymptotic fractal set results for a
conservative system (an incompressible flow). Note, how-
ever, that the fractal here attracts the flux of the convect-
ed vector field rather than typical orbits.
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B f3, 5x, +)t32—5x~+p3 5x3, (6a)

Eq. (2a) implies that the (contravariant) coefficients /3, ,

p2, and p3 are constant along the trajectory of a fluid ele-

ment. On the other hand, if we express the vector VP in
terms of the reciprocal basis,

VP =a, 5x2 X 5x3+ a2 5x, X 5x, +a3 5x, X 5x2, (6b)

the (covariant) coefficients a&, a2, and a3 are constants
along the fluid trajectory. This follows by forming
5x, .VQ and noting that the volume of the parallelepiped
formed by 5x„6x2, 5x, , namely,

5 V 5x3 6x] X 5x2 5x2 5x3 X 6xi 6x] 6X2 6x3

is constant for incompressible flow.
The goal of this paper will be to relate the spectrum of

fractal dimensions associated with the sets on which the
vectors B and VP accumulate to properties of the chaotic
flow. To this end it is first necessary to define measures p
whose fractal dimensions can be determined. We assume
that the flow and the convected quantities are confined to

In addition, we also note that Eq. (4) is the equation
satisfied by the vorticity in an incompressible inviscid
fluid flow. Thus the considerations here may also be of
interest for the study of high-Reynolds-number fluid tur-
bulence. We note, in this connection, however, that, for
the fluid turbulence case, the equation is extremely non-
linear, since the vorticity is the curl of v, whereas for the
kinematic dynamo v is prescribed and Eq. (4) is linear in
B. Furthermore, in the high-Reynolds-number limit of
fluid turbulence v(x, t) is not a smooth function of x since
V X v concentrates on a fractal. Since in that which fol-
lows we will take v(x, t) as a prescribed smooth function,
our considerations apply more directly to the dynamo
problem. We speculate, however, that the methods used
in this paper may yet be extendable to the more difficult,
self-consistent fluid turbulence problem.

Considering the case of convection of the scalar P, we
see that the growth of VP due to divergence of nearby
fluid elements follows from the fact that the difference be-
tween the values of p on two adjacent fiuid trajectories is
a constant. That is,

d
(5x VP) =0 .

dt

Since the flow is incompressible and chaotic, at least one
solution for 5x(t) must decrease in time as another grows.
Consequently, VP must grow to maintain 5x VP con-
stant. By analogy with the work on the vector case, ' we
can anticipate that nonuniform growth of ~VP~ will lead
VP to concentrate on a fractal as well. The possibility of
measuring the fractal dimensions of passive scalar gra-
dients is demonstrated by the experiments in Ref. 7.

The relationship between the solutions of Eq. (3) and
the vectors B and VP can be made more precise by con-
sidering the following. In three dimensions Eq. (3) will

have three independent solutions for the linearized dis-
placement 5x about a trajectory: 6x, , 5x2, and 5x3. If we

represent the vector B in the basis formed by these vec-
tors,

a finite volume Vo of space. For any subregion V in Vo,
we define the measures pz(t, y; V) and p&(t, y; V) as

f iB(x, t)hard x
Ps (»)

iB(x, t)hard x
Vo

f ~Vy~&d'x
(7b)

f [Vy/& d'x

where B and P are the solutions to Eqs.. (2a) and (2b), re-
spectively, with smooth initial conditions. [For our pur-
poses, in what follows, we may think of B(x,0) and

VP(x, 0) as uniform fields. ]
We suppose that if we examine Eq. (7) at some instant

of time, t =t„ then, if ti is su%ciently large, the mea-
sures p~ and p& will approximate fractal measures (cf.
Sec. II). That is, if p~ and p& are examined with finite

length resolution r, they look like fractal measures.
Ideally r can be made as small as we please by making t,
larger. In physical (nonideal) cases, however, we cannot
make t, too large and still neglect the effects of diffusive

processes. In the case of the dynamo, the magnetic field
diffuses due to the finite electrical conductivity of real
plasmas; while for the passive scalar problem, the
"contaminant" P can diffuse through the convecting
fluid. Let r„be the typical small scale generated at time
t =t, from Eqs. (2) (i.e. , without diffusive processes). Let
rd be the minimum gradient scale set by diffusive process-
es in the limit t

&
~ (x) . If t

&
is too large, then r, &

& rd, and
the diffusion cannot be ignored. Throughout most of this
paper (except for Sec. V), we shall use Eqs. (2). Hence we
assume that t, is an intermediate time long enough that
r„ is much less than the scale size of the flow (thus the
concept of an approximate fractal is useful) yet short
enough that r„)rd [thus diffusion can be neglected and

Eqs. (2) apply].
It is our goal in this paper to relate the fractal dimen-

sion of the large-t measures to averages involving expan-
sion and contraction rates of tangent vectors of the flow.
In Sec. II we review concepts of dimension for a measure.
If a dimension associated with a measure is noninteger we

say that the measure is a fractal measure. In Sec. III we
consider incompressible two-dimensional flows v(x, t)
[i.e., if z denotes the third direction v(x, t) has no z com-
ponent and is independent of z]. Section III A derives a
partition function formalism which relates the stretching
properties of the flow to the dimension spectrum of the
long-time measures p~ and p&. It turns out that for two-
dimensional flows the dimension spectra for pz and p&
are the same. The assumptions and validity of the parti-
tion function formalism are also discussed. Section III B
applies the results of Sec. III A to a particular simple ex-
ample, an incompressible generalized baker's map. It is
shown for this example that the partition function gives
correct results (i.e., results in agreement with those de-
rived by the similarity method, Ref. 3). Also it is evident
from this example that fractal measures are to be expect-
ed in typical situations (i.e. , flows where the stretching is
nonuniform so that some fluid elements experience
greater stretching than others). Section III C considers a
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formulation in terms of the distribution function for
Lyapunov numbers. Section III D treats a model of a
nonperiodic (e.g. , turbulent or temporally chaotic) fiow in
terms of a random map. In this case, at each discrete
time the map is to be applied, a parameter in the map is
chosen at random. A possible analogy with spin glasses
is pointed out in this case. Sections IV A and IV B derive
the partition function formalisms for three-dimensional
flows for the vector and scalar gradient cases, respective-
ly. The treatment is very similar to that in Sec. IIIA,
with the important difference that the dimension spectra
for the vector and scalar gradient cases no longer coin-
cide with each other when the flow is three dimensional.
Section IV C applies the results of Secs. IV A and IV B to
a specific v(x, t) which is smooth in space. For the partic-
ular v(x, t) we choose it is possible to carry out the
stretching averages to determine an explicit analytical
formula for the dimension. In Sec. V we consider the
effect of nonideal diffusive processes on the vector and
scalar problems. These effects can lead to important
qualitative changes in the results of Secs. III and IV when
t& becomes too large. Section VI concludes the paper.

where the quantity q is an index, —~ & q & + ~. Here
we imagine the d-dimensional space in which the measure
lies to be divided up by a cubic grid of grid size c., and p,
denotes the measure in the ith cube of the grid. Letting
q ~0, Eq. (8) becomes the capacity dimension

1nN (e)Do= lim
E-0 ln( 1/s )

where N(s) is the number of cubes in the grid needed to
cover the set. Letting q~ 1 Eq. (8) becomes

g p, in@,

inc.
(10)

which is called the information dimension. Grassberger
and Halsey et a/. have introduced a variant on Eq. (8)
which allows the measure to be covered by a set of cubes
of variable sizes. Specifically they define the following
quantity (called the partition function):

II. DIMENSION OF A MEASURE

D = lim
q

—1 c-o

ln pq

inc.
(8)

The spectrum of dimensions for a measure p intro-
duced by Renyi and later, in the context of nonlinear dy-
namics, by Grassberger and by Hentshel and Procaccia is
given by the following formula:

q

I (r, q, s, IS; I)=g (1 la)

where IS; I denotes a set of cubes of edge lengths E, & s
which cover the measure, p, is the measure in cube i, and
r=(q —1)D. If q &1 (q & 1) we choose the set of cubes
IS; I so as to make I as small (large) as possible subject to
the constraint c.; ~ c.,

minimum over IS, I of I (r, q, E, IS,. I ) if q & 1
1(r,q, c)= '

maximum over IS; ) of 1 (r, q, E, IS, I ) if q & 1 . (1 lb)

We then take the limit E~O,

I (r, q) = lim I (r, q, E) .
0

(1 lc)

III. DIMENSION FOR TWO-DIMENSIONAL
INCOMPRESSIBLE FLUID MOTIONS

where we have denoted the critical value of ~ by ~ . A
dimension D is then defined by

Dq =rql(q —1) . (13)

If the set IS, ) were taken as the cubes in a grid, and the
optimization specified by Eq. (11b) were ignored, then the
dimension definitions of D and D would be the same.
The optimization (1 lb) can, in principle, make D smaller

than D,
D ~D (14)

It can be shown that I will then be infinite if ~ exceeds a
critical value, and I will be zero if ~ is less than this criti-
cal value,

0 if r&r
I rq='

if r&r

A. Partition function from stretching properties
of the system

x„+,=M(x„), (15)

where x„ is the position of a fluid element at the end of

We first consider the case where the continuous flow is
modeled by a two-dimensional area-preserving map. This
is appropriate for time-periodic flows in two dimensions
if the map is continuous. In addition, as shown in Refs. 2
and 3, a discontinuous, two-dimensional map can model a
smooth time-periodic three-dimensional flow whose ac-
tion in each time period is to nonuniformly stretch, twist,
and fold the fluid.

In the case of a time-periodic flow one imagines in-
tegrating Eq. (1) over a period of the fiow to obtain a re-
cursion relation or map,
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the nth time period of the flow. A variation of this equa-
tion,

5x„+,=J(x„}.5x„, (16)

where J is the Jacobian matrix of partial derivatives of
M, produces the linearized trajectories 5x„ from which
the evolution of the vectors 8 and VP can be deduced.
[Equation (16) is the map version of Eq. (3).] In the case
of two dimensions (BIBz—=0) considered in this section,
we may take one of the 5x, to be in the third direction
(which we take to be the z direction}, and Eq. (6) becomes

B=13, 5x, +P, 5x, ,

Vg=a, 5x, Xzo+az5xiXzo .

Thus, if 5x& grows exponentially, we see that
~B~ —~VP~ —~5x, ~. From this it follows that in two-
dimensional chaotic flows p~ and p& typically concen-
trate on the same fractal set. Thus in what follows it
suffices to consider only p~.

Although our discussion in this section is in the con-
text of smooth maps appropriate to time-periodic two-
dimensional flows, we emphasize that there is no forma1
difference in treating flows with nonperiodic time depen-
dence. In that case we can imagine strobing the flow
periodically in time. The only resulting difference would
be that the function M in Eq. (15) would become an expli-
cit function of time, M=M( xn) An ex. ample of this
type where the dependence on n is random (i.e., M is
chosen randomly from some probability distribution at
each iterate} is given in Sec. III D. This randomness in
the map might be interpreted as a crude model for a tur-
bulent flow.

In order to find the dimension of the measure in Eq.
(7a) in terms of Lyapunov numbers, we use a technique
previously utilized for chaotic attractors and chaotic re-
pellers of dissipative dynamical systems. ' '" Suppose we
start at t =0 with a uniform field B(x,O)=BO and imag-
ine that we divide the space by a square grid of unit grid
size 5. We now iterate the map n steps. If 5 is small
enough, the action of the map on a given square will be
linear. Thus the map will take an initial square into a
parallelogram. Let X& =I

&
and A,z. =—L.2- be the magni-

tudes of the eigenvalues of the Jacobian matrix of the n
times iterated map for initial conditions in the jth square,
where A,

&
) I ) A,z (note that A.

&
A, z =1 since areas are

preserved). Then the parallelogram will be long and thin,
with long dimension A.", .5 and short dimension A, z 5, as
shown in Fig. 1 (where the parallelogram has been drawn
as a rectangle). We then cover the resulting parallelo-
gram with smaller boxes of edge length A, z 5. There are
roughly A, ", /A. z

= A, ,
". such boxes. Let p denote the mea-

sure initially in box j. Let p. denote the measure in one
of the small boxes covering the j parallelogram at iterate
n. Since the fields have been increased by a factor A,

&
due

to stretching, and the area of a little box is smaller than
the area of box j by a factor A,z"=A, , ", we have from Eq.
(»)

~(y —2)n
J &J

J

n iterates

initial
box I

FIG. 1. n iterates of the jth box.

where, in the sum in the denominator, we have taken into
account the fact that the parallelogram is covered by k, "
small boxes. For a uniform initial field, all the p are
equal and we obtain

1J

g LI',
J

(17)

where L, = A, ", . From Eq. (11)

p'7
I =gL,

~

J J

where E, =5/L, -L, '. Inserting Eq. (17) then yields

~ I [(q —1)(D —2)+yq] '

lJ

We thus define a new partition function based on the
stretching properties of the map,

I'i(D, q, n) = (L, ) I(L f )~,
o. —:(q —1)(D —2)+yq,

(19a)

(19b)

where L, (x) is the largest Lyapunov number of the n

times iterated map for the orbit originating at the point
x, and the angle brackets denote an average over space'
(i.e., over x). Letting n ~ ~ in Eq. (19) is analogous to
letting E~O in Eq. (1 lc) (recall that for Fig. 1,
E; =5/A, ", ). Thus we define a dimension D as the value
of D at which the quantity

I i(D, q)= lim I (iD, q, n)
n~oo

(20)

goes from zero to infinity as (q —1)D increases. Again,
since the optimization specified by Eq. (11b) has not been
carried out,

D +D (21)

ln(L, )
q ( cr ) = lim.-- in(L[) '

However, it appears to us that our covering is a rather
natural one, and we conjecture that (at least for hyperbol-
ic maps) the equality in Eq. (21) applies. Indeed this will
be shown to be the case for the generalized baker's map
example in Sec. III B.

We can obtain an explicit parametric representation of
the function Dq versus q as follows. For large n we ap-
proximate D as the solution of I &(D, q, n) = 1 (since for n

large the quantity I & passes from very large values to
very small values as D passes through D ). Equations
(19a) and (19b) then yield
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D (o)=. 2+(o —yq)/(q —1) .

—ln(L r )

For n ~(x) we have

(L rilnL, ) —ln(Lr ) —n«;)
Thus the coefficient of the (q —1) term in I ~ becomes
large with n unless D =D& with

Thus, from the first equation, we obtain a value of q for
each value of o which when inserted in the second equa-
tion yields the corresponding D . Numerical computa-
tions of D versus q based on this procedure should be
fairly efficient.

It is of interest to investigate Eq. (19) for several limit-
ing cases.

(i) For q =0, Eq. (19) yields I ~= (L', ' ). Since
L, ~ ~ as n ~ ~, we have Do =2. The interpretation is
that there is an area such that any subset So of this area
which itself has positive area has p(y, S0 ) & 0.

(ii) For y =0, we have I z
= ( L,~ ' " ' ) which again

yields D =2.
(iii) Perhaps the most interesting case is the limit q ~ l.

Equation (19) gives to first order in (q —1) the result,

(Lr, lnL, )
I i =1+(q —1) (D —2+@) (Lr)

are of this type. The latter case is treated in Sec. IV.
More generally, in flows which are not steady or periodic
in time (e.g. , turbulent or temporally chaotic flows) there
are no KAM tori (the concept in these cases does not
even make sense), and we expect our partition function to
apply. At any rate, nonperiodic time dependence is prob-
ably a case of great interest, since many flows encoun-
tered in practice are of this type. In addition, we note
that related partition functions based on local stretching
rates have been constructed for determining the dimen-
sion spectra of strange attractors of dynamical sys-
tems. ' '" In this case, current evidence strongly suggests
that these partition functions give correct dimension
spectra even for nonhyperbolic processes provided that q
is not too large, q &qT, where qT is a critical value. "
From an analogy with thermodynamics the behavior at
qT has been shown to correspond to a phase transition. "
If such phenomena also occur for the case of chaotic time
dependence of the flow v(x, t) then the situation might be
analogous to a phase transition in a spin glass' (cf. Sec.
III D).

B. Example: the generalized baker's map

To make matters more concrete we consider a particu-
lar example of a two-dimensional map, the incompressi-
ble, generalized baker's map, ' '

D) =2—y lim
n ~ oo

(I.r inI. r ) (I.r )in(—I.r )
(LrlnLr )

(22)

ex„ if y„&a
C

n +i 1 —Px„ if y„&a, (23a)

Note that for any function f (x) of a variable x, where
d f /dx &0, we have f (x) &f (X), where the overbar
denotes an average over x. Thus, with f (x)=x lnx, we
obtain

(L r InL r ) & ( I.; ) in(L r ),
and hence D& ~ 2. The equality is attained only if all the
L

&
in the average are the same. That is, the distribution

function for L, (cf. Sec. III C) is a 6 function. Hence, if
the stretching is nonuniform, then D, & 2 and the mea-
sure is, in general, fractal. The example of Sec. III B
clearly shows this.

For the case of a smooth two-dimensional flow (rather
than a discrete map), all the considerations above carry
through with L, replaced by exp(h, t) where h; is the
Lyapunov exponent calculated for the given initial condi-
tion in the time interval 0 to t, and t denotes the continu-
ous time variable replacing the discrete time variable n.

Our considerations above assume a splitting between
distinct expanding and contracting directions (cf. Fig. 1),
as well as ergodic behavior of orbits throughout some re-
gion of space. Thus our considerations would be expect-
ed to apply to time-periodic flows if the dynamics is hy-
perbolic (such cases have, by definition, the splitting men-
tioned above). Note, in particular, that Kol'mogorov-
Arnol'd-Moser (KAM) tori are absent in hyperbolic pro-
cesses. For nonhyperbolic cases, without; discernible
KAM tori, we might also expect the theory of this sec-
tion to be relevant. For example, at a large nonlinearity
parameter the standard map and the ABC map (Sec. IV)

y„/a if y, (a
"+' (1—y )/P ify &a (23b)

X
I

X

FIG. 2. Schematic illustrating the generalized baker's map
examined in Sec. III B.

where a+p= l. The action of this map on the unit
square is illustrated in Fig. 2. The unit square is divided
by a horizontal line at y =a. The lower rectangle is
compressed in the x direction by a factor o. and expanded
in the y direction by a factor 1/a and placed in the left
side of the unit square. The upper rectangle is
compressed in the x direction by a factor p= 1 —a, ex-
panded in the y direction by a factor 1/P, and then in-
verted top to bottom and left to right and placed on the
right side of the unit square. The inversion is such that
the side originally located at x =0 winds up at x =1, and
the side originally located at y =1 winds up at y =0.
Strictly speaking this map is not continuous. However, if
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we select as initial conditions

B(x,y, n =0)=y80

go to zero or diverge depending on o. . The critical value
which defines D~(y ) is the solution of the transcendental
equation,

and i —~+pi —~=( i —r+pi —rp (27)
P(x,y, n =0}=x@o,

then all quantities will remain independent of y, and no
singularities in the fields, B and VP, develop as a result of
the discontinuities in the map. In particular, P remains
continuous.

We now consider what application of the map does to
the fields B and VtI}. After one iteration of the map we
have two strips: one (0&x &a) with ~B~/BO= ~V/~/$0
=a ' and one (a &x & 1) with )B(/8O = (VP~ /Po =P
After a second iteration there will be four strips, two of
width aP with vector field strengths proportional to
(aP) ' and one each of widths a and P with field
strengths proportional to a and P, respectively.
After n applications, we have 2" strips of varying widths,
a" P ( m =0, 1,2, . . . , n ), and field intensities,
(a "P™).The number of strips corresponding to a
given m is the binomial coefficient, '

Z(m, n)=n!/[m! (n —m)!] .

In general, the fields are increasing with time everywhere.
However, if the stretching is nonuniform, a&P, the rate
of increase is larger for some orbits than for others. The
result is that the measure of the fields defined by Eqs. (7}
takes on the character of a fractal set, emphasizing the
points where the growth is largest.

Let us now perform the averages defined in Eq. (19).
The appropriate weighting function to be assigned to an
initial condition that results in a sequence which has m
contractions by a and n —m contractions by P is

P(m, n)=a Pl™Z(m,n),
where a P" represents the area of the initial condi-
tions that will experience a particular sequence of con-
tractions, and the factor Z =n!/[ m! ( n —m )!] accounts
for the number of such sequences. For particular values
of m and n, the magnitude of the largest eigenvalue of the
Jacobian of the n times iterated map corresponding to
that sequence is

(m n )
—a™P—(n —m)

Thus we find

C. Distribution function of Lyapunov exponents

The analytical result (27) is obtained easily in the ex-
ample under consideration because we have made use of
the binomial identity to simplify the partition function.
Suppose instead that we attempted to evaluate the aver-
age in Eq. (24) directly. To this end we introduce the dis-
tribution of Lyapunov exponents (cf., for example,
Grassberger et al. ") implied by P ( n, m ). Let

L(m, n)=exp[nb(m, n)]=(a P" ) (28)

where h is the Lyapunov exponent. As n ~ ~ the
discrete sum over m can be replaced by a continuous in-
tegral over h,

QP(m, n)L = f dh p(h, n)e "" (29)

Using the explicit expression for L(m, n), Eq. (28), and
approximating Z (m, n ) for large n and m by using
Sterling's formula, we find

p (h, n) = [nG "(h)/2m]' exp[ —nG (h)],
where

G (h) =m lnm+(1 —m )ln(1 —m )+m jn(P/a) —lnP,

(30)

This same result has been derived in Ref. 3 using similari-
ty arguments. The fact that Eq. (27) derived using the
partition function (19) agrees with Ref. 3 is a
confirmation of the correctness of Eq. (19) for hyperbolic
cases. As an example, let q ~1 and y = 1. Then Eq. (27)
yields

ln2

in[1/(aP)' ]
which is less than 2 (and hence indicates a fractal) if
a&P=(l —a) (i.e., a& —,'). [This follows since the max-

imum value of a(l —a) is —,
' and occurs at a= —,'.] For

a= —,
' all initial conditions experience precisely the same

stretching (1/a= 1/P=2) on each iterate. For general
chaotic flows, nonuniform stretching is to be expected.
Thus for typical situations we expect fractal measures.

(L; }= g P(m, n)(a " P '" '),
m=0

or, using the binomial identity,
v n

(24)
with

m =(h +lnf3)/ln(P/a) .

(31)

(L, }= a — +P1 1

CX

(25) Thus, as n~ ao, the distribution of exponents becomes
peaked about h where

The partition function can then be written directly in
closed form,

(a 1 —cr +P 1 —cr
)

n

I ~=
1 —r+pl —r )qn

where o is given in Eq. (19b). As n ~ m, I & will either

G'(h ) =0,
with a width that decreases as n ' . We can now per-
form the integral in Eq. (29) using the method of steepest
descent to obtain

(L }=exp I n[G (g ) ——vg ]I,
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where g is defined by the condition for the exponent to
be stationary,

G(h) —hG '(h)= —I duPO(a)ln(a' +P' G
) .

G'(g, )=v . (32)
(37)

Using this result in the partition function results in the
expression

exp[ n—[G(g )
—erg ]I

exp[ nq [—G(g ) —yg ]I
Thus the condition for I & to be finite as n ~ ~ is

(33)

(34)

D. Random maps

The specific example of Sec. III 8, i.e., the generalized
baker's map, was taken as a model for a time-periodic
flow. We now consider as a model of nonperiodic flows a
further generalization of the map described by Eqs. (23)
where we allow the parameters a and P= 1 —a to be
different on each iteration. Further, we imagine that at
each iteration the value of a is selected randomly accord-
ing to some distribution Po(a). For a given realization,
the distribution function for Lyapunov exponents satisfies
the recursion relation

p(n + l, h)= a„p(n, [(n +1)h —lna„']/n )

+P„p(n, [(n + 1)h —inP„']/n ), (35)

where a„and l33„=(1—a„) are the parameters for the
(n + 1)th iteration of the map. We assume that, for large
n and for each realization, the distribution function tends
to the form given by Eq. (30), where G(h) will have an
average value G(h) (which is independent of n and the
same for all realizations) and a small fluctuation 5G„
(which is diff'erent from realization to realization and
varies with n). Inserting G =G+5G„ in the recursion
relation (35) and expanding for n large and 5G„small, we
obtain

n [5G„+,(h) —5G„(h)]+G(h) —hG '(h)

(36)

where G '(h)=dG/dh. Averaging Eq. (36) produces a
transcendental diff'erential equation for G(h),

It can be verified for the particular case of G given by Eq.
(31) that Eqs. (27) and (34) are equivalent as they should
be.

We now argue that the result (34) is general for typical
two-dimensional maps. That is, in typical cases Eq. (30)
describes the distribution of Lyapunov exponents with
the functional dependence of G different for different
maps. As a result, there is an implicit relation between
the spectrum of fractal dimensions D (y ) and the distri-
bution of exponents -exp( —nG). Further, because
D (y ) is determined by a single function G, the function-
al dependence of D on the two parameters y and q is re-
stricted. We note, however, that this will not be the case
in three dimensions (Sec. IV).

from which the fractal dimension is determined.
Equation (38) could have been determined more direct-

ly by using the binomial identity to express the partition
function I &,

g (
1
—(x+f31 —a)

r, =
I —y+ pl —

y )q

As n ~ ~ the partition function will tend to zero or
infinity exponentially unless cr(q) assumes the critical
value which determines D (y). Thus we anticipate that
in general for large n,

I l
=exp[nF„(a', y, q) ],

where the function F„will have average value F plus a
small deviation. The critical value of o. can then be
determined by demanding that the average of the loga-
rithm of the partition function vanish as n ~ ~,

1F=—1nI =0 . (39)

We believe Eq. (39) has general relevance and can be
used, for example, for low-Reynolds-number turbulent
flows. Equation (39) has a formal similarity to the prob-
lem of spin glasses. There one considers a random Ham-
iltonian (analogous to our random sequence) and is again
interested in the average of the logarithm of the partition
function. '

IV. DIMENSION SPECTRA
FOR THREE-DIMENSIONAL

INCOMPRESSIBLE FLUID MOTIONS

In this section we consider fully three-dimensional fluid
flows. Unlike the two-dimensional case treated in Sec.
III, in the three-dimensional case the partition function
for the measure of a convected vector [p~ given in Eq.
(7a)] and the partition function for the gradient of a con-
vected scalar [lM& given in Eq. (7b)] are unequal. Section
IV A obtains the partition functions for the vector case,
while Sec. IV 8 treats the case of a convected scalar. In
both cases the resulting dimensions are strictly upper
bounds on the box counting dimension [one can also deal

Further, one can see that as n ~ ~ the deviation 6G„will
tend to zero as n ', justifying the current approach.

While Eq. (37) is difficult to solve explicitly for G(h)
we can immediately obtain a transcendental equation for
the dimension D (y). In particular, the condition for a
stationary exponent in the steepest-descent integration,
Eq. (32), determines the value of G '(h), and the value of
the integral itself is dependent on the combination
G —hG '. Thus Eq. (34) can be written

f da Po(a)[ln(a' +P' )
—

q ln(a' y+P' y)]=0,
0

(38)
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with "partial dimension" associated with different direc-
tions as in the case of chaotic attractors (cf. Grassberger
and co-workers '")]. Section IV C presents results for a
particular flow (the ABC map) as an illustration of the
utility of these results.

~~ t3 iterates

initial
cube j

Lz, 8

L()8

A. Partition function for convected vector fields
FIG. 3. n iterates of the jth cube.

—(L3qL —(q —11(D —31)y(Ly )q

Covering with boxes of edge Lz 5, we have

(L 1(qL(D
—21L —

1
}
—(q —11)y(L3 )q

(40a)

Comparing Eqs. (40a) and (40b), we see that they are
equal at D =2 and that by virtue of the definition of L2

I

%'e proceed as in Sec. III A, except that now we have
three (rather than two) Lyapunov numbers A. 1

~ Az ~ A.3

with A, , A, 2 k3- =1, and now the subscript j labels a cube
in a three-dimensional grid of unit size 5 (see Fig. 3). In
this case we must give some partial attention to the op-
timization specified by Eq. (11b). In particular, we can
consider covering the slab at the nth iterate in Fig. 3 ei-
ther with cubes of edge length L3 5 or with cubes of edge
length L2 5. In order to decide between these choices, we
invoke (1 lb), and use the choice which gives the larger I z
when q ) 1 and the smaller I & when q ( 1. Covering with
cubes of edge L3 6, we have

and L3 (i.e., L2~L3)

I 32(&I 33 if (D —2)(q —1}o(0

r&z if D ~2
if D~2,

and Dq is defined to be the value of D at which

lim„„ I & passes from zero to infinity. Again I & gives
an upper bound on the dimension, Dq Dq.

For the case of a continuous time system (a flow), as
opposed to a map, the Lyapunov numbers L, ~ L, ~ L,
may be replaced by L„~exp(h„t) (r = 1,2, 3 ), where

h, (x, t)+h3(x, t)~h3(x, t) are the Lyapunov exponents
computed for the time interval between 0 and t for the or-
bit whose initial condition is x. In particular, note that
for the case of a time-independent flow hz = 1.

For q ~ 1, Eqs. (40) and (41) give

D& =min '

3 lim
(L~lnL f ) —(L~ )1 (nL )r

(L ~(in(L(L3) )

( L |'lnL r, ) ( L r, ) ln ( L r, ) + ( L f lnL 3 )

(L 1('lnL2 )

(42a)

(42b)

B. Partition function for the gradient
of a passively convected scalar

The growth of a convected vector following a fluid ele-
ment is -L, . That is, the vector grows in proportion to
its stretching. The growth of the gradient of a passively
convected scalar following a fluid element is —L 3

That is, the gradient grows in proportion to how much
nearby points become still nearer. Since P is conserved
following fluid elements, the exponential approach of
nearby points implies exponential growth of VP. Thus
now ~VP~r —L3, 1' in computing the measure in Eq. (7b).
[In Sec. III we had iVP{,~-Lz, ~=L]J (where L(~L2J =1
by incompressibility) which rendered the results for VP

I

(L —
3 q+(q —1)(3—D) ) g( L

—
3 )q (43a)

( L 1+ ( q
—11(3 D)L —

( 1'q + 1 1 )—
r„=

(L,L;"+&')q (43b)

where if D is calculated from both Eqs. (43a) and (43b)
we choose the smaller of the two. Letting q~1 in Eq.
(43}gives

and 8 identical. In three-dimensional flows we have
L

&jL 2jL 3j 1, and so there is no clear relation between
the results for VP and B.] Proceeding as in Secs. III A
and IVA, but using iVpi3'-L3 'r in place of ~B~3'-L';.,
we obtain the following results:

D& =min '

3 —y lim 1—
(L 1'lnL 1' )

J

(L L ~ "lnL 3') —(L L ' +")ln(L L '+ ')
n ~ oo

(44a)
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C. An example: The ABC map

We consider a particular Quid velocity given by

v(x, t) = xou„(y, z)5T(t —e)+yov~(x, z)5r(t —2E)

+zou, (x,y)5T(t —3e),
where 5T is a periodic string of 5 functions,

5T(t) = T g 5(t —nT),
n = —oo

(45)

note that, for large K, Eq. (48) produces displacements
which are typically large compared to the periodicity
length of the map [K))(periodicity length)=2m. ]. Thus
the correlation time of the chaotic orbit is approximately
zero. In particular, when averaging Eq. (49) over initial
conditions we may neglect correlations between g„and

(n&m). Using this, we can perform the averages in
Eq. (42a) [it turns out that D& &2, so Eq. (42a) rather
than Eq. (42b) is relevant] as follows:

and c is a small positive quantity. Integrating dx/dt
=v(x, t) through one period T, we obtain a three-
dimensional volume-preserving map which relates x at
time t =nT to x at time t =(n +1}T,

where

y}=j lcosej'
0 277

x„+,=x„+Tv, (y„,z„),
yn + 1 =y„+MUy(x„+ i,z„)

„+i
—z„+Mv~ (x„~i, z„+ i )

Letting T~O, Eqs. (45) and (46) go over to the steady
continuous fiow v(x, t) =u„(y, z)xo+U~(x, z)yo+ v, (x,y)zo.
Here we consider finite T and choose the so-called ABC
form for u» Uy7 Uz

'"G ~+—
2 2

G ++ I
2

where 6 is the gamma function, and

(L(lnL~t ) =K "(I "lnK i'"+3nI " 'Iz),
where

2~ dOI2(y)= f ~c os9~~1 n~c os&~'= ydI, (y)ld y.
0 2'/T

U = A sinz+C cosy,

U =B ssnx+ A cosz,

U, =C siny+B cosx .

(47)

In the denominator of Eq. (42a} it is sufficient to take
only the lowest-order term in lnK if we assume lnK )&1
and A.z

—O(1). Thus we do not require knowledge of Lz,

(L~&ln(L&L2) ) =-(L~& )lnK " .
This choice has been extensively studied as an example of
a chaotic fiow in the case of a steady fiow ( T~O) by
Dombre et al. ' More recently, the "ABC map" given by
Eqs. (46) and (47) has been introduced. ' ' Here we
study the map version with the parameters chosen so that
AT=BT=CT=K and K is large. As an example, we
calculate the information dimension of the measure of a
convected vector field pz by using the partition function
given in Eq. (42) [for this map I"z can also be evaluated
from Eq. (40)]. Using reasoning similar to that used by
Chirikov' to calculate the Lyapunov number of the stan-
dard map with large nonlinearity parameter (analogous
to large K in the above), we will be able to calculate the
various Lyapunov number averages appearing in Eq. (42).

For the special case we consider, the map is

x„+,=x„+K(cosy„+sinz„),

y„+,=y„+K(sinx„+, +cosz„),

z„+,=z„+K(cosx„+,+siny„+, ) .

Linearizing Eq. (48) for small variations 5x„about an or-
bit x„[cf.Eq. (16)], we find that to lowest significant or-
der in a large-K expansion of Eq. (48),

6z~ + ) =K cosx~ + ) cosy~ + &
coszn 6zn

3

Let g„=cosx„+,cosy„+ &
cosz„. Then we have

(49)

Following Chirikov's treatment of the standard map, we

Inserting these in Eq. (42a) we obtain

I2 —I&lnI
&D)=3—

I]lnK ~
(50)

V. NONIDEAL EFFECTS

A. Effect of Diffusion on Passive Scalar Gradients

We can qualitatively understand the role of diffusion
by considering the following argument. In the absence of
diffusion the value of a passive scalar P at any point and
time (x, t) is determined by the value that P had at the in-
itial point (xo, O) whose subsequent trajectory carried it to

Note that this gives D, (3 [cf. the discussion following
Eq. (22)]. Thus the measure is fractal. The ABC map
with K =1.5 in Eq. (48) has been used to numerically
evolve an initial vector field B(x,O) in Refs. 2 and 3. It
was shown that the numerical results display a tendency
for the field to concentrate in smaller and smaller fine
scaled regions consistent with eventual concentration on
a fractal ~ Note that for large K the dimension is slightly
less than 3 and approaches 3 for K~ ~. That the di-
mension approaches 3 for large K is a consequence of the
fact that for large K the spread in the distribution of
Lyapunov exponents becomes small compared with the
average exponent which is of order lnK. Applying the
same technique to the passive scalar case we find that the
information dimension of p& [given by Eq. (44)] is the
same as that for ps, Eq. (50), for lnK » 1.



39 FRACTAL MEASURES OF PASSIVELY CONVECTED VECTOR. . . 3669

the point x. Similarly, from Eq. (6b} the gradient of P can
be expressed in terms of the initial gradient on the same
trajectory. In the presence of diffusion the value of p at
some point becomes a weighted average of the initial
values of P with the weighting being a Green's function.
The Careen's function C(x', t', x, t) satisfies the equation

aC , , a a aG
, +v(x', t'). (51)at' Bx Bx Bx

with t ~ t and the "initial" condition taken at t'= t to be

C(x', t;x, t)=5(x' —x) .

When the diffusion coefficient is small and time is not too
large, the Green's function will be strongly peaked
around the initial point on the trajectory (x0,0) and the
value of P and its gradient can be calculated as if the
diffusion coefficient were strictly zero. This approxirna-
tion will break down for large enough time such that the
Green's function acquires a width which is comparable to
the initial scale length for variations of P. At this time
IV/I will cease to grow exponentially.

To estimate this time, we consider the evolution equa-
tion for the typical separation between two points 5
which are convected by the fluid and diffuse,

, 5I'= —2g+2~. I5I',

where g is the difFusion coefficient and h (0 is the most
negative Lyapunov exponent corresponding to trajec-
tories which diverge as they are traced backwards. The
variable t' runs backward from the current time t to the
initial time 0 (since both —2g and 2h I5I are negative,
they both lead to increase of I5I as t' runs backward). If
we take 5( t ' = t) =0 as the initial condition, then the mag-
nitude of 5 at t'=0 can be thought of as being the extent
of the Green's function. The solution,

h, t =
—,'ln

hl o
(56)

This cutoff will not affect the spectrum of dimensions
D (y) provided that the stationary phase points h =g
and h =g defined by Eq. (32) and appearing in Eq. (34)
are smaller than h, . For large enough time, h, will be-
come smaller than g and g and the dimension of the
measure will cease to be described by our theory. This
time will depend on y and q.

The preceding discussion applies to the initial value
problem where an initially smooth P(x) acquires small
scales due to the chaotic fluid flow. In the quasisteady
problem one imagines that a steady smooth source S(x)
with scale length lo is added to the right-hand side of Eq.
(2), and the time asymptotic properties of the measure are
of interest. The value of P and its gradient can be ob-
tained using the same Green's function as introduced for
the initial value problem. In particular

P(x, t)= fdx f' dt' S( x)C( xt'; xt), (57)

where S(x') is the source term. The difference between
the values of p(x, t) on two adjacent points separated by
6x can be expressed as a convolution of the source with
the difference of the Green's function,

5P= f dt' f dx'S(x')5x G(x', t', x, t) .
oo Bx

(58)

For times in the recent past, i.e., t —t' ( t&, the integrand
in Eq. (58) grows exponentially as

p(h, t)-[tG"(h)/2m. ]'~ exp[ —tG(h)]

in the absence of diffusion. With diffusion present there
will be a cutoff forcing p(h, t) to effectively zero for ex-
ponents (equivalently, length scales) such that h )h„
where h, satisfies

I5(0)l = [exp(2lh lt) —1],
m

(52) 5x(t') VS(x(t')},

thus gives the extent of the Green's function. When this
equals the initial scale length 10, exponential growth of
the gradient ceases. Equating 5(0) and 10, we find that
the time t for which we can neglect diffusion is given by

ln(lh Ilo/g) .1

2Z. (53)

(lo/l~) =( Ih I to/g)'" (55)

The effect that diffusion will have on the spectrum of
fractal dimensions can be treated using the distribution of
Lyapunov exponents discussed in Sec. III C. For a two-
dimensional continuous time system we expect

For times less than tt the gradient of P will grow ex-
ponentially at a rate Ih I. The typical scale length of P
at t& is given by

lg=loexp( —l~ Itq)=(g/l~ I)'", (54)

and the maximum ratio of the final gradient to the initial
gradient is given by

where 5x(t') is the separation between the two trajec-
tories leading to the final points. When the difference
time t —t' reaches t&, the integrand tends to zero rapidly
due to the exponential growth of the extent of the
Green's function. Thus, if we cut off the time integral for
5$ at (t t')=t&, we ob—tain the following estimate for
the difference in the two values of P:

5&=
&

15xl IVS Iexp( lh It&),
1

m

(59)

where 5x is the separation at t'=t. Dividing through by
I5xl and inserting the expression for t& yields an expres-
sion for the gradient of P,

Ivyl = Ivsl
(60)

This estimate has the following properties. First, the
local rate of dissipation (IV/I is independent of the
diffusion coefficient g. Second, IV/I depends only on the
inverse power of h rather than exponentially. Thus for
the steady source problem and smooth flows where h is
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relatively constant in space we do not expect the measure
of the dissipation to be fractal in steady state (t ) t&). In
this case we have shown that P is varying on small scale
[Eq. (60)] on a set of dimension 2.

B. KS'ect of Dift'usion on Convected Vector Fields

In this section we wish to consider the effect of finite
resistivity on magnetic Geld evolution in a situation
which yields a kinematic magnetic dynamo. In this case,
Eq. (4) is modified by the addition of a difFusive term
gV' B on its right-hand side. For simplicity in this sec-
tion, we shall only consider the specific case of q =y = 1,
and we shall, in addition, specialize to the following
baker's map which has been discussed in Refs. 2 and 3 as
a simple model of a three-dimensional time periodic flow
which yields a kinematic magnetic dynamo

ax„, if y„(a
tn+'= Px ify )a
y„ /a, if y„&a

y" +' (y„—a)/P, if y„&a

(6 la)

(61b)

where a+P= l. The action of the map is as follows. The
unit square, 0 & (x,y}& 1, is divided into two rectangles
by a horizontal line at y =a. The lower rectangle is
compressed in the x direction by a factor a and expanded
in the y direction by a factor 1/a. The upper rectangle is
compressed in x by a factor P= 1 —a and expanded in y
by 1/p. (See the first two panels of Fig. 2.) The upper
rectangle is then translated to be next to the lower rectan-
gle [i.e., the up-down and left-right flipping of the upper
rectangle in Eq. (23) is not done].

We add diffusion to the Baker's map (61) in the follow-
ing way. We imagine that we apply the mapping (61)
periodically in time at intervals of length T. When the
map operation is applied, we imagine that the flow
motion moving the fluid (cf. Refs. 2 and 3) is done so rap-
idly that negligible diffusion occurs (i.e., it takes essential-
ly zero time to carry out the map operation). The fluid
then sits motionless until it becomes time to apply the
map again (i.e., the time T has elapsed from the last time
the map was applied). Thus the diffusive effects essential-
ly operate only over the dead periods between the times
when the map is applied. We may think of each period as
consisting of applying Eq. (61) with diffusion omitted and
then letting 8 evolve according to BB/Bt =/V' B, for a
time T after which the next map operation is applied, and
so on. (This type of diffusion model of kinematic
dynamos has been discussed by Bayly and Childress. )

We shall show for this case that the long-time limit of
the magnetic field is electively a fractal with dimension as
given in Sec. III B. By "effectively, " we mean that it ap-
pears as a fractal down to some minimum scale past
which diffusive smearing becomes operative. Note that
this situation is very different from the case of the passive
scalar (Sec. VA), where we found that for any range of
scales considered the diffusion always matters if we wait
long enough.

To proceed we must first recall the action of the
baker's map (61) in the absence of diffusion. ' Say

lnN(E)
~-0 inc

where the one corresponds to the dimension along y and
c~O corresponds to n ~ ~ which yields

Di =1+ (62b)
ln( ~/aP)

This expression has been previously quoted in Sec. III B
(see also Refs. 2 and 3). [Note' that (62) gives D, for
0 & 8 & l. If 9= 1 the right-hand side of (62a) is Do rather
than D, .]

We now ask, what is the effect of diffusion on the
above? During each period, the map operation increases
the magnetic field (by 1/a and 1/P for yea) and reduces
its scale of variation (by a and I3 for y&&a), after which
diffusion smears the result over a length of order v'gT.
For most strips, the diffusion balances the reduction of
scale at the time n specified by i/gT —(ap)", or

n& —ln((T)/in(aP) .

For longer times n ))n&, we expect B(x,n) to approach
an eigenfunction of the map-diffusion operator,

B (x, n) =2"b (x), — (63)

where the eigenfunction b (x) has a minimum scale i/(T.
Say we cover the x interval (0,1) with E intervals, and
determine the minimum number of these needed to cover
0 of the flux in the eigenfunction b(x). We claim that
N(e) has the same scaling as indicated in Eq. (62) provid-
ed that E is not too small; that is, we have the scaling

(Dl —1)N(e)-e (64)

for E & i/gT, where Di is given by Eq. (62b). To see that
this is the case imagine that we initialize the magnetic
field in the eigenfunction b (x) and consider a succession
of c. values e=(ap)~~ where p is an integer with

B(x,y, n =0)=yB0, Bo & 0, as in Sec. III B. After 2" ap-
plications of the map there will be 2" strips of varying
widths a" p (m =0, 1,2, . . . , n). Each strip will have
the same flux, I, , B (x,n)dx, equal to Bo the initial flux

across the square, due to the frozen in condition, and all
these fluxes will be directed upward. Thus the flux across
the whole square is 2"8O, and we see that the flux grows
exponentially in time at a rate (ln2)/T. (The exponential
increase of flux makes this a kinematic dynamo. '

) The
number of strips of width a" p is Z ( m, n ) as dis-
cussed in Sec. III 8. For large n, Z(m, n) as a function of
m/n is strongly peaked around m/n =

—,
' with a width

O(l/i/n ). Thus for large n most of the 2" strips have
m /n =1/2 and width of order (ap)" . The information
dimension (q =1) for @=1 may be obtained in the fol-
lowing simple way. ' ' Let E=(aP)", and cover a frac-
tion 8& 1 (e.g. , 0=0.9, say} of the flux with the smallest
number of x intervals of length c.. Since most of the
strips obtained from iterating the map (i.e., most of the
flux) have width of order (ap)" ~, the number N(e) of in-
tervals of length c needed to cover some fixed fraction 0
of the flux is of the order of the total number of strips,
N(E) —2". The information dimension of the magnetic
field can then be obtained as ' '
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1 «p &n&, note that these c. values are larger than the
diffusive scale. Now evolve the field forward p steps. The
initial flux [namely, @o=f Ob (x)dx] is now in each of 2~

strips of varying widths a~ P and most of these have
widths of order (aP) . [Because (aP)t' » &gT
diffusion has negligible effect on this statement. ] Thus
the number of intervals to cover a fraction 0 & 1 of the
flux is as given previously (namely, -2~), and the argu-
ments leading to Eq. (62) apply. However, by Eq. (63) we
have that B(x,p)=2~b(x). Thus since the factor 2~ does
not change the fractal dimension b(x) must satisfy Eq.
(64), and it appears as an efl'ective fractal quantity with
D, given by Eq. (62b) for scales larger than &gT.

To conclude this section, we emphasize that our result
that D& applies for the small diffusion case is only in the
specific context of our baker's map example, Eq. (61), and
we do not know what happens in general. For example,
in Eq. (61) there are no reversals of flux (i.e., if the initial
B is everywhere upward it remains so), while the map (23)
reverses flux on each iterate. Thus for Eq. (23) (which is
not a dynamo ), as time proceeds it can be shown that
there is an ever more fine-scaled spatial alternation be-
tween upward and downward field vectors. Small
diffusion eventually leads to mutual cancellation effects

when the upward and downward vector regions diffuse
into each other. This effect is not present for the case of
Eq. (61), and its absence is what allows the simple
analysis we have given above.

VI. CONCLUSIONS

Motivated by recent work on magnetic dynamos and
by the possibility of experimentally measuring gradients
of convected passive scalars, we have considered the
convection of vector fields and scalar functions by in-
compressible, chaotic fluid flows. %'e have defined mea-
sures based on the magnitudes of the vectors and the gra-
dients of scalars. These measures have been shown to be
multifractals. The dimension spectra for these fractal
measures have been related to the stretching properties of
the fluid flows by a partition function formalism, and the
utility of this formalism has been demonstrated by appli-
cation to examples.
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