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Dimension Measurements for. Geostrophic Turbulence
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The transition to geostrophic turbulence in a rotating annulus experiment has charac-
teristics which differ from the scenarios for the transition to turbulence which have
been previously described. Estimates of dimension from the experimental data suggest
a mechanism in which a discrete symmetry of the preturbulent state plays an important
role. The techniques used for the dimension estimates are new and substantially more
efficient than those used previously.

WACS numbers: 47.25.Qv, 47.10.+g

A rotating, differentially heated annulus of
fluid is a classical laboratory model for the large-
scale midlatitude circulation of the Earth's at-
mosphere. ' Extensive investigation has classif ied
large portions of the stability diagram for these
laboratory systems in a parameter plane repre-
senting Rossby and Taylor numbers. " Figure 1
illustrates the behavior from one set of experi-
ments conducted at the Geophysical Fluid Dynam-
ics Institute, and described in detail elsewhere. '
This Letter reports the results of additional anal-
ysis of the data from these experiments, analysis
directed towards characterizing the transition to
geostrophic turbulence.

Experiments with Rayleigh-Benard convection'
have revealed substantial qualitative differences
in the transition to aperiodic flow in small. —and
large-aspect-ratio containers. With small-as-
pect-ratio containers, there is a close parallel
between the routes to chaos found in nonlinear
dynamical systems with a low-dimensional state
space and the transitions observed experimental-
ly. ' We were motivated to examine the transition
to geostrophic turbulence in a rotating annulus
because the experimental data did not appear
consistent with the mechanisms by which a qua-
siperiodic motion becomes aperiodic in simula-
tions of low-dimensional systems. ' Our analysis
confirms this conclusion, but we discuss our
methods before presenting these results and
speculating on their signif icance.

Previous efforts to calculate the dimension of
attractors' have required significant amounts of
computation. The methods employed here are
much more efficient though they seem subject to
larger statistical fluctuations when applied to a
given amount of data. The theory underlying the
method will be developed in more detail else-

where, but we give a brief sketch here. Strange
attractors are complicated geometric objects,
typically with a fractal structure, ' which appear
in the state space of chaotic flows. The problem
which confronts us is the specification of a rea-
sonable definition of the dimension of an attractor
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FIG. 1. Regime diagram, IIossby number (Bog vs
Taylor number {Ta) for experimental series C, showing
the relative location in parameter space of different
time-dependent behaviors. Dots along the diagonal line
correspond to a sequence of experiments at a constant
imposed temperature contrast &T and at successively
higher rotation rates Q (0 is lowest for experiment 75
and increases in the direction of experiment 81; ex-
periment number is indicated to the left of each dot).
The number shown to the right of each dot represents
the dominant azimuthal wave number in the wave
regime, and the peak of the broad wave-number spec-
trum in the geostrophic turbulence regime.
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which can be readily estimated. Intuitively, the
dimension should roughly correspond to the num-
ber of independent measurements which must be
made to distinguish distinct states of the fluid on
the attractor. In these measurements of dimen-
sion, we weigh regions of the attractor by tQe
frequency with which a typical trajectory visits
them through the introduction of an invariant
measure p supported on the attractor.

Our strategy for computing dimension is adapted
from the work of Billingsley" and Young. " Let
p be a measure on R" and A be a set of positive
p measure. Denote the ball of radius r centered
atx by B„(r) and its p volume by V„(v) = p(B„(r)).
Young" proves that if for x &A,

6 -liminf " - lim sup
1nV„(r) . lnV„(x)

r-p lnr g~ p lnr

then the Hausdorff dimension of A, DH (&), satis-
fies

We adapt this technique for dimension calcula-
tions by assuming that for almost all points x of
the attractor (relative to p), the limits in the
above inequalities exist and are independent of x.
An estimate for the dimension of the attractor is
then given by calculating the function V„(r) for a
typical point x and plotting lnV„(r) vs in~. The
calculation of V„(&) proceeds by assuming that
an experimentally observed trajectory gives a
good randon sample of points on the attractor
relative to the measure p. For attractors whose
dimension is not very small, this assumption is
nontrivial because very long trajectories are
needed to sample all regions of the attractors.
We return to this point in later discussion. Our
dimension estimates accept the estimate that
V„(r) is the proportion of points in the observed
trajectory which lie within distance & of the point
X

The calculations themselves proceed efficient-
ly, as follows. One begins with an experimental-
ly observed trajectory of M+1 points which is as-
sumed to be on an attractor and lack transient
behavior. From this trajectory, one selects a
reference point x and computes the distance d,
from x to the other N points y, of the trajectory.
The list of distances d, are then sorted numer-
ically. From the sorted list, one reads that the
ith largest distance gives a value of ~ for which
V„(r) = i/N. We have plotted these values for i
=2' (j =1,. . . ,k; j =log,N) on a log-log plot of r
vs V„(~). The dimension is estimated from such

a plot as the inverse of the slope of this curve.
We caution, however, that the function V„(r)
need not be a smooth curve, so that an accurate
estimation of the dimension may require a much
wider range of values of r than one can hope to
obtain experimentally or numerically.

To check the suitability of this strategy for cal-
culating dimension, we performed several numer-
ical tests. The results of one are shown in Fig.
2, where we display the log-log plots for seven
separate collections of 5000 points on tori T" of
dimensions n =2, 3, 5, 10, 25, 50, and 99. The
straight lines in these plots have slopes which
correspond to the different values of n. These
experiments give us confidence that this method
of calculating dimension gives good rough esti-
mates with amounts of data that are readily ob-
tainable from experiments and require only mod-
est amounts of computation, on the order of
N(lnN+ n) operations for N observations of n var-
iate data.

We have also tested the method on several
modes of chaotic attractors, including the Henon
map, ' the Lorenz equations, " and a map with an
attracting nowhere differentiable torus. " These
tests give results consistent with estimates ob-
tained with use of other methods. '*" However,
as noted by Pfeffer, "the method must be used
with great caution and does not always give reli-
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FIG. 2. Log-log plots of y vs p(~) for several nu-
merical examples on tori T" of dimension pg =2, 3, 5,
10, 25, 50, and 99. [Numerical values of ln(g) rep-
resent a relative scale; numerical values shown on the
in+ axis represent g of the i=2~ value from the sorted
list of data; see text. ] The inverse of the slope is
proportional to the dimension.
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FIG. 3. Log-log plots of y vs P(y) for the experi-
mental series (coordinate axes scaled as in Fig. 2).
(a) Amplitude vacillation region; symbols and experi-
ment numbers in order of increasing rotation rate are,
respectively, circles, 75; and triangles, 28.
(b) Structural vacillation region: right triangles, 76;
triangles, 29; squares, 83; hverse triangles, 77;
diamonds, 82; and circles, 78. (c) Transition zone:
circles, 32; triangles, 31; and squares, 72. (d) Geo-
strophic turbulence regime; circles, 79; triangles, 80;
and squares, 81.

able results for reasonable models of some of the
experiments analyzed here (cf. the discussion of
amplitude vacillation below. )

Let us return now to the experimental data.
The results of our dimension computation are
displayed in Fig. 3. The apparatus contained 2016
thermistors in an annulus with inner and outer
radii 30.48 ~0.01 and 60.96~0.01 cm. The work-
ing fluid, 1.52-cS (1 S= 1 cm'/sec) silicone fluid
(Prandtl number Np, = 21), had a free top surface
and a depth of 15.00 to 0.05 cm. To perform our
computations, we selected recordings from 27
thermistors located near middepth and weQ away
from the walls of the rotating annulus. The num-
ber 27 was arbitrarily chosen to be large enough
to represent the dimensions of the attractors we
expected to find. The distance" d, represents
here a maximum absolute value of the 27 temper-
ature differences between the reference point x

and another point y, of the trajectory. Dimension
calculations based upon a larger number of ther-
mistors are in progress.

The stability diagram of Fig. 1 shows four dis-
tinct regimes, three of which represent time-de-
pendent flows. In the region of amplitude vacilla-
tion, the fluid motion is quasiperiodic. If one
models this quasiperiodic motion as a superposi-
tion of traveling waves, then Fourier analysis in-
dicates that some 95% of the variance of the data
is contained in four Fourier modes. Pfeffer" ob-
served that our dimension estimates underesti-
mate the dimension corresponding to a superposi-
ti.on of n-linear traveling waves, and we can show
that the method yields a dimension estimate of
2 (n + 1) if the temporal frequencies of the waves
are independent. For the experimental data, our
dimension estimates are consistent with a model
represented by the superposition of four traveling
waves. The data are insufficient to determine
whether there are two, three, or four independ-
ent frequencies.

The dynamics of the structural vacillation re-
gime are still not fully characterized. The esti-
mated dimension of 1.6 for the structural vacilla-
tion regime is surprisingly small and requires
further investigation. The dimension measure-
ments shown in Fig. 3 indicate that, as the rota-
tion rate of the appartus increases, there is a
jump in the dimension of the attractor which be-
gins at small amplitude in phase space and grows
continuously. As the amplitude of this high-di-
mensional motion approaches the amplitude of
the dominant wave itself, the fluid undergoes the
transition to geostrophic turbulence. Conserva-
tive estimates for the dimension of the attractor
in these regimes are within the range of 7 to 12.

The jump in dimension from the amplitude vac-
illation regime through the structural vacillation
regime is a departure from the scenarios for the
transition to chaos which have been described for
low-dimensional dynamical systems that deserves
explanation. There is a dynamical mechanism
which appears consistent with our measurements
and other information about this flow. The ob-
served flow in the structural vacillation regime
has an (approximate) discrete spatial symmetry
which corresponds to rotation by 2&/4 or 2&/5 in
the experiments analyzed in the structural vacil-
lation regime. If a new asymmetric oscillatory
mode of instability appears in the fluid motion,
then the symmetry of the fluid equations and the
motion prior to the instability force the instabil-
ity to be degenerate, The translates of the asym-

1440



VoLvMa 51, NvMoaR 16 PHYSICAL REVIEW LETTERS 1? OcToezR 198$

metric oscillatory mode by the symmetry group
would be distinct oscillatory modes. Thus, it is
plausible that a quasiperiodic state with fivefold
symmetry would evolve into an attractor with a
jump in dimension from 2 to 7.

An alternative hypothesis to the scenario de-
scribed above is that random effects or noise are
responsible for the growing disorder of the fluid
in the structural vacillation regime. Gucken-
heimer" presents methods for distinguishing the
effects of noise and deterministic chaos upon ex-
perimental data by analyzing the short-term evo-
lution of nearby initial states. These methods do
not seem to be practical here because the dimen-
sion of the attractors is too large. Recalling our
assumption in the dimension computations that
the trajectory represented by the experimental
observations was randomly distributed on the at-
tractor, one can estimate the expected recur-
rence time for a trajectory. This recurrence
time grows exponentially with dimension and is
experimentally unreasonable for attractors of
even moderate dimension. Detailed reconstruc-
tions of the dynamics of attractors from experi-
mental data are feasible only for attractors of
low dimension. Geostrophic turbulence does not
appear to be a fluid state represented by a low-
dimensional attractor, suggesting that further
understanding of this fluid state will require a
statistical methodology.
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