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1 Introduction

In previous lectures, we have studied the basics of dynamics, which include dimensions of (strange)
attractors, Lyapunov exponents, and chaos. Then, we have studied patterns in time, i.e. phase
dynamics described by the Complex Ginzburg Landau (CGL) equation. We started with the single
oscillator synchronization with noise. As local coupling bing considered, phase diffusion (KPZ)
model was introduced, which gives domains of synchronization and the probability distribution
of phase. In the case with global coupling, the coupling competes against dispersion and noise,
and can result in global synchronization (Kuramoto transition), where range of couping is the key.
Finally, we studied phase turbulence, i.e. repulsive coupling and Kuramoto-Sivashinsky equation.

In this chapter, we study patterns in space, i.e. patterns formed by convections near marginality.
The focus is on secondary instability in an ensemble of convection cells/rolls near marginality, i.e.
in the weakly nonlinear regime. Fig.1 shows the two major types of secondary instabilities discussed
here. Eckhaus instability arises from modulating the array of convection rolls, which breaks the
translational symmetry, resulting in clustering and coarsening of vortices. Zigzag instability is due
to the bending of the rolls, which breaks the rotational symmetry.

The subject discussed here is classic, as easily amenable to experiment, and is tractable as “near
equilibrium”. The approach is to set up a basic model of near marginal convection rolls, i.e. the
Swift-Hohenberg model. Here, we adopt the envelope formalism for patterns. Modulations in en-
semble of rolls, i.e. pattern dynamics on scales larger than that of individual rolls, are described
by envelope equations (Newell-Whitehead model), which is similar to the wave kinetic equation
(WKE). In the Newell-Whitehead model, the translational and rotational invariance is not pre-
served. Thus, secondary instabilities arise due to the asymmetries, leading to pattern formation.
We also show that the nonlinear Schrodinger equation is a generic envelope equation of a weakly
nonlinear dissipative wave train.

The subject discussed here is more elegant and “classical” than useful, and is a must for a basic
course. Some related, but more relevant models include 1) fixed flux convection (Chapman-Proctor
model) and 2) convection driven flows (Howard-Krishnamurti model).

2 Physics of Convection

2.1 Rayleigh-Benard Convection

We consider the Rayleigh-Benard convection in stratified fluid or atmosphere. The fluid is incom-
pressible, i.e. ∇ · v = 0, as τ > l/cs. A parcel will rise by buoyancy if dS/dz < 0, i.e.
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Figure 1: Patterns formed by 2 types of secondary instabilities in near marginal convections: (left)
Eckhaus instability, (center) zigzag instability, and (right) coexistence of both instabilities.

Figure 2: Cartoon of (left) Rayleigh-Benard convection and (right) convection rolls.
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where γ is the ratio of heat capacities. The characteristic time scale of the buoyancy (τb) is

1

τ2b

∼=
g

γ

∂S0

∂z
. (2)

If there exists dissipation, then the time derivatives become

∂tT̃ → ∂tT̃ − χ∇2T̃ ,

∂tṽ → ∂tṽ − ν∇2ṽ.

The viscosity and heat diffusion can damp convection. Therefore, it is natural to require for
instability that

τντχ
τb

> 1. (3)

Hence, we can conveniently define the Rayleigh number as

Ra ≡ g
∂S

∂z

l4

νχ
, (4)

such that instability requires Ra > Racrit. In a 2D box with hight h, the Rayleigh number is

Ra ≡ g∆Tαh3

νχ
, (5)

2



Figure 3: Critical Rayleigh number curve. khh is the normalized horizontal wave number. Minimum
Racrit occurs at kh,crit.

where α is the coefficient of thermal expansion, i.e. δρ = −αδT .

The basic equations of Rayleigh-Benard convection are

∂

∂t
∇2ϕ− ν∇2∇2ϕ = −gα

∂

∂x

(
T̃

T0

)
, (6)

∂

∂t

(
γ
T̃

T0

)
− χ∇2T̃ = −ṽz

∂S0

∂z
. (7)

Here, the flow velocity is defined as v = −∇ϕ× ŷ, and ∇2 = ∂2
x+∂2

z . Redefining w = ṽz, θ = T̃ /T0,
and β = −∂S0/∂z, we can rewrite Eq.(6)-(7) as

∂

∂t
∇2w = gα

∂2θ

∂x2
+ ν∇2∇2w, (8)

∂θ

∂t
= βw + χ∇2θ. (9)

The behavior of the critical Rayleigh number is set by dissipation and boundary conditions. For no
slip boundary conditions: ṽz|0,h = 0 and ṽh|0,h = 0, where ṽh is the horizontal velocity. Note that
for incompressible flows, ∇hṽh+∂z ṽz = 0, and ∇hṽh|0,h = 0 due to the no slip boundary conditions.
Hence, ∂z ṽz|0,h = 0. The critical Rayleigh number depends on the wave number in the horizontal
direction, as shown by Fig.3. For high kh, the dissipation (νk2h etc.) stabilizes convection. For
low kh, convection is damped by the no slip boundary, where ṽh = 0. Note that in the stress free
regime, the critical Ra curve has the similar structure, while numbers change.

2.2 Swift-Hohenberg Model

How to describe the convection for Ra = Racrit + ϵ, i.e. a small excursion into super critical state?
In 1D, the key elements are Racrit, kcrit, the Racrit curve, and the saturation. Because the system
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Figure 4: Swift-Hohenberg model is applicable to a band of modes near Racrit.

approaches the steady state, so the Racrit curve can be fit with a parabola, and thus the model of
growth near marginality is

γτ0 = (Ra−Racrit)− τ0ε
2
0(k − kcrit)

2. (10)

Therefore, schematically, we can obtain

τ0
∂w

∂t
= (Ra−Racrit)w − τ0ε

2
0

(√
−∂2

x − kcrit

)2
w − |w|2w, (11)

which has the form of the Landau equation. This is a step toward the Swift-Hohenberg Model, a
reduced model of convection near marginality [Swift, Hohenberg (1977)].

Beyond 1D, we consider uniform base state and rotationally invariant in 2D plane (i.e. convection
rolls). Thus, γq can depend only on |q| = q, not q. Hence, we can obtain

γqτ0 = p− c(q − qc)
2, (12)

τ0
∂w

∂t
=

[
p− c

(√
−∇2 − qc

)2]
w − |w|2w, (13)

Here, p ≡ Ra − Racrit is the control parameter, and qc is the wave number with the minimum
growth rate.

Near the onset, there is q + qc ∼= 2qc, and so we can write the number 1 in a “creative way”:
1 ∼= (q + qc)

2/4q2c . Consequently, after rescaling, the growth rate is rewritten as

γqτ0 ∼= p− c

4q2c
(q2 − q2c )

2. (14)

Finally, we can obtain the Swift-Hohenberg equation

∂w

∂t
= rw − c

(
∇2 + q2c

)2
w − |w|2w. (15)

The nonlinear term restricts the growth at finite amplitude, and respects the inversion symmetry
(w → −w) and phase symmetry of the basic equations.

The Swift-Hohenberg model describes convection near the onset, but cannot quantify its own
breakdown. It describes interactions above marginality, with a narrow band of modes (Fig.4).
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The Swift-Hohenberg model can be derived from basic equations systematically, but the derivation
is tedious and not instructive. Alternatively, the Swift-Hohenberg model is derivable from the
variational principle, i.e. by considering the Lyapunov function:

V [w] =

∫
dx

∫
dy

{
−1

2
rw2 +

1

4
rw4 +

1

2

[(
∇2 + q2c

)
w
]2}

, (16)

and
dV

dt
= −

∫
dx

∫
dy (∂tw)

2 . (17)

This means any evolution of w tend to decrease V , and V is minimal at the stationarity of w. It
can easily be shown that ∂tw = −δV/δw, from which the Swift-Hohenberg model can be obtained.

3 Pattern Formation: Secondary Instability

How does the pattern of excited cells evolve? What configuration does it adopt? In this section, we
first derive the Newell-Whitehead model, which describes the stability of modulation to the base
state. There are 2 types of secondary instabilities arising from this system, corresponding to the
2 invariance in the base state. The Eckhaus instability emerges from breaking the translational
symmetry, resulting in the coarsening of convection domains. The zigzag instability arises from
bending the convection cells, with the rotational symmetry broken.

3.1 Newell-Whitehead Model

It is classic to explore the stability of a band of modes with

q = q0x̂+ k. (18)

The base state is an array of convection cell with wave number q0x̂. k represents a large-scale 2D
perturbation to the base state, which breaks the symmetry. Because |k|/|q0| ≪ 1, so w can be
written in terms of an amplitude and a carrier, i.e.

w ∼= w0A(x, y, t)e
iq0x + c.c.+O(ϵ). (19)

Now, go back to the model of growth near marginality, i.e. Ra−Racrit = ϵ ≪ 1, and we can obtain

γτ0 = ϵ− ε20 (|q0x̂+ k| − q0)
2

= ϵ− ε20

q0

[(
1 +

kx
q0

)2

+
k2y
q20

]1/2
− q0


2

∼= ϵ− ε20

(
kx +

k2y
2q0

)2

.

The second term here describes the envelope’s dependence on k. Higher order terms in k are
irrelevant. Note that the asymmetry in kx and ky is due to symmetry breaking, or direction set, of
the base state.
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Using the same technique, we can obtain the envelope equation by considering

τ0∂tw = ϵw − ε20 (|q0x̂+ k| − q0)
2w. (20)

Here, we can set w = w0A exp(iq0x), and k → −i∂x. Moreover, considering the w → −w symmetry
and w → weiϕ symmetry, the nonlinear saturation is retained as −|w|2w. Finally, we obtain the
Newell-Whitehead equation (amplitude equation)

∂TA = A+

(
∂x −

i

2
∂2
y

)2

A− |A|2A, (21)

where we have rescaled the following quantities: x = |ϵ|1/2x/ε0, y = |ϵ|1/4y(q0/ε0)1/2, T = ϵt/τ0,
A = (g/|ϵ|)1/2.

Similar to the Swift-Hohenberg model, the Newell-Whitehead model has Lyapunov function, and
so is also derivable from the variational principle. The key difference between the two models is
that the Swift-Hohenberg model maintains the rotational symmetry of the base state, while the
Newell-Whitehead model breaks the symmetry by considering an asymmetric 2D perturbation to
the base state, i.e. q = q0x̂+ k.

The Newell-Whitehead equation Eq.(26) is a complex equation, which guarantees that phase dy-
namics is relevant. Thus, it is useful to rewrite as A = |A|eiϕ ≡ aeiϕ. Ignoring the y dependence,
we can obtain an amplitude equation and a phase equation:

∂Ta =
[
1− (∂xϕ)

2
]
a+ ∂2

xa− a3, (22)

∂Tϕ = ∂2
xϕ+

2∂xa

a
∂xϕ. (23)

The phase evolution is driven by phase diffusion and an extra term 2∂xϕ∂xa/a. Hence, the sign
of the effective diffusivity depends on the magnitude and sign of this extra term. We can observe
that the amplitude a evolves via a−a3, favoring long wavelengths. Therefore, the short wavelength
dependent terms in the amplitude equation are of the same order, giving that (∂xϕ)

2 ∼ ∂2
xa/a ∼

(∂xa)
2 /a2. Therefore, the phase evolution is of order ∂Tϕ ∼ ∂2

xϕ± 2 (∂xϕ)
2 ∼ −k2xϕ(1± 2ϕ). Here,

the sign is determined by the local slope of the amplitude. When |ϕ| > 1/2, the second term on
the left hand side of the phase equation can effectively flip the sign of effective diffusivity.

Next, we calculate the steady state phase winding solution to the Newell-Whitehead equation. For
simplicity, consider ∂xa = 0 and ϕ = δkx+ ϕ0. From the amplitude equation, we can obtain

a =
√

1− δk2, (24)

which requires the rescaled δk < 1, or the original δk <
√
ϵ/ε0. This suggests that phase winding

is termed with long wavelength. Hence, the solution is

w =
1

2

(√
1− δk2eiϕ0eiq0xeiδkx + c.c.

)
. (25)

Here, the “winding” is a weak modulation of the mode amplitude.
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3.2 Eckhaus Instability

What type of secondary instabilities might occur? To answer this question, we need to look at what
symmetry of the base state is broken. The base state has translational symmetry and rotational
symmetry. Next, we examine the secondary instabilities induced by breaking these two symmetries

Breaking the translational symmetry results in the Eckhaus instability. Starting from uniformly
distributed convection rolls, modulation brings rolls closer. Then, vortices with like signs attract
and collapse to roll pairs, which lowers the energy (∇A)2. The final result is patterns of vortex
bunches. This process is one of the modulation → coalescence → condensation phenomena. The
clustering of vortices suggests the existence of negative diffusion.

With a modulation of the amplitude A(x, y, t) = Ã(x, y, t)eiδkx, the Newell-Whitehead equation
becomes

∂T Ã =
(
1− δk2

)
Ã+ 2iδk

(
∂x − i∂2

y

)
Ã+

(
∂x − ∂2

y

)2
A− |Ã|2Ã. (26)

The uniform phase winding solution is Ã0 =
√
1− δk2, requiring the rescaled δk < 1, or the original

δk <
√
ϵ/ε0.

Consider a perturbation about the uniform phase winding state, i.e. Ã = Ã0 + ã. The perturbed
amplitude is complex, i.e. a = u+ iv. Therefore, equations for u and v can be obtained

∂tu =
[
−2(1− δk2) + ∂2

x + δk∂2
y − ∂4

y

]
u− (2δk − ∂2

y)∂xv, (27)

∂tv = (2δk − ∂2
y)∂xu+ (∂2

xδk∂
2
y − ∂4

y)v. (28)

Writing u and v in Fourier components, i.e. u = uest cos(qxx) cos(qyy), v = vest cos(qxx) cos(qyy),
the dispersion relation can be obtained

s2+2(1−δk2+q2x+q2yδk+q4y)s+[2(1−δk2)+q2x+q2yδk+q4y ](q
2
x+q2yδk+q4y)−q2x(2δk+q2y)

2 = 0. (29)

For Eckhaus instability, it is uniform in the ŷ direction, i.e. qy = 0. Hence, the dispersion relation
becomes

s2 + 2(1− δk2 + q2x)s+ q2x[2(1− 3δk2) + q2x] = 0. (30)

which can be rewritten in the generic form

(s− s1)(s− s2) = 0, or s− (s1 + s2)s+ s1s2 = 0. (31)

Instability, i.e. complex solution, requires s1s2 < 0. Therefore, the criterion for onset of Eckhaus
instability is

δk >

√
ϵ/3

ε0
. (32)

Combining the requirement for phase winding, the Eckhaus instability requires
√

ϵ/3 < |δk| <
√
ϵ,

for ε0 = 1. This hydrodynamic mode results from the broken translational invariance. It can also
be presented as a negative diffusion phenomenon.
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Figure 5: Criteria of Eckhaus instability and zigzag instability. Here, ε ≡ Ra−Racrit, k ≡ δk, N is
the neutral curve below which is the stable region, E is the Eckhaus unstable region, and Z is the
zigzag unstable region.

3.3 Zigzag Instability

Another invariance is the rotational invariance in the x, y plane of the primary instability. It is
broken by bending the convection rolls. The bending saturates due to the (∂2

yA)
2 term in the

energy of Newell-Whitehead model.

In analysis, take qx = 0, qy finite, and then we can obtain the solutions of Eq.(29)

s− = −2(1− δk2)− q2yδk − q4y , (33)

s+ = −q2y(q
2
y + δk). (34)

s− is dominated by the first term, so is negative. Unstable solution requires s−s+ < 0. Thus,
s+ > 0, and we can obtain the criterion for zigzag instability

δ < −q2y . (35)

4 Other Pattern-Related Problems

Below is a list of problems relevant to the topic of pattern formation discussed here:

• Secondary instability in waves: nonlinear Schrodinger (NLS) equation, which is a special case
of the complex Ginzburg Landau equation.

• Geometry effect: effects of boundary conditions on amplitude equation. Obviously, the wave
number q is quantized within the boundary layer. (Fig.7)

• Grain boundary/dislocations, resulting in pattern discontinuities. (Fig.8)

• Phase diffusion: negative diffusion during the clustering process.
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Figure 6: Effects of boundary layer on amplitude.

Figure 7: Effects of grain boundary/dislocation.

4.1 Nonlinear Schrodinger Equation as Envelope Equation

The classic plasma problem of Langmuir turbulence reduces to NLS in the subsonic case. But NLS
is far more generic. Also, we observe that NLS equation can be derived from the CGL equation

∂tA = rA+ (1 + iα)∂2
xA− (1 + iγ)|A|2A, (36)

where α is the dispersion effect, and γ is the nonlinear frequency shift. Taking the conservative
limit r → 0, |α|, |γ| ≫ 1, we can obtain

i∂tA = −α∂2
xA+ γ|A|2A, (37)

which is the nonlinear Schrodinger equation. Therefore, NLS is generic, and it gives quadratic
feedback on the mean field, through the |A|2A term.

Next, we show the NLS can describe the envelope of a weakly nonlinear dissipative wave train.
Consider a linear, dispersive wave train

Φ =

∫
dkF (k) exp(ikx− iω(k)t). (38)

With a small perturbation to the wave number, i.e. k0 → k0 + δk, the dispersion relation becomes

ω = ω(k0 + k − k0)

= ω0 + (k − k0)ω
′
0 +

(k − k0)
2

2
ω′′
0 +O(δk3).

Ignoring the higher order terms, the wave train can be written as

Φ = φei(k0x−ω0t), (39)
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where the envelope function is

φ =

∫
dkF (k + k0) exp

[
ikx− i

(
kω′

0 +
k2

2
ω′′
0

)
t

]
. (40)

The envelope φ clearly satisfies

i(∂tφ+ ω′
0∂xφ) +

1

2
ω′′
0∂

2
xφ = 0. (41)

Hence, the modulation has the dispersion relation

ω = kω′
0 +

1

2
k2ω′′

0 , (42)

i.e. φ = a0 exp(ikx − iωt). By adding a nonlinear frequency, we can obtain the new dispersion
relation

ω = kω′
0 +

1

2
k2ω′′

0 − qa2. (43)

Then, the envelope satisfies

i(∂tφ+ ω′
0∂xφ) +

1

2
ω′′
0∂

2
xφ+ q|φ|2φ = 0. (44)

Now, in the frame co-moving with the group velocity of the wave train, i.e. vgr ≡ ω′
0, the envelope

equation becomes

i∂tφ+
1

2
ω′′
0∂

2
xφ+ q|φ|2φ = 0, (45)

which is the nonlinear Schrodinger equation. Therefore, NLS is generic to weakly nonlinear dissi-
pative wave train, with nonlinear frequency shift ∼ a2 ∼ |φ|2.

NLS has imaginary coefficients, so we need to treat it via φ = Aeiϕ. The amplitude can be further
separated into a spatially uniform mean field and a small fluctuation, i.e. A = A0(1 + Ã). Thus
the evolution of Ã and ϕ is

∂tÃ+
1

2
ω′′
0∂

2
xϕ = 0, (46)

∂tϕ− 1

2
ω′′
0∂

2
xÃ− 1

2
ω′′
0 (∂xϕ)

2 + q|A0|2Ã = 0. (47)

By linearizing these two equations, we can obtain the dispersion relation

Ω2 =
1

4
ω′′2
0 k4 +

1

4
qω′′

0k
2|A0|2. (48)

Therefore, instability requires qω′′
0 < 0. This is the Benjamin-Feir instability, where the modulation

grows. It is also the linear relative of self-focusing.

The self-focusing effect originates from the nonlinear attraction (|φ|2φ), while the diffraction (∇2φ)
acts against focusing. The competition of the two depends on the dimensionality of the system.
When the wave field intensity |φ|2 is localized in a nD region whose volume is ∼ ln. The total
energy of the system ∼ |φ|2l ln is conserved, while the region contracts or expands. Therefore,
when the region size becomes l′, the intensity becomes |φ|2l′ ∼ |φ|2l (l/l′)n. On the other hand,
the diffraction scales as ∼ (l/l′)2. Therefore, in 1D, there exists a scale at which the diffraction
balances the self-attraction, and thus self-focusing stops, producing a soliton structure. In 3D, the
self-attraction is always stronger than the diffraction, which leads to collapse of the contraction size
and singularity formation. 2D is a special case, where self-attraction is always of the same order as
diffraction. Thus, the system state is sensitive to perturbations and initial conditions.
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