
PHYSICS 210A : STATISTICAL PHYSICS

HW ASSIGNMENT #7 SOLUTIONS

(1) Consider the equation of state

p
√

v2 − b2 = RT exp

(

− a

RTv2

)

.

(a) Find the critical point (vc, Tc, pc).

(b) Defining p̄ = p/pc , v̄ = v/vc , and T̄ = T/Tc, write the equation of state in dimen-
sionless form p̄ = p̄(v̄, T̄ ).

(c) Expanding p̄ = 1+ π , v̄ = 1+ ǫ, and T̄ = 1+ t, find ǫliq(t) and ǫgas(t) for −1 ≪ t < 0.

Solution :

(a) We write

p(T, v) =
RT√
v2 − b2

e−a/RTv2 ⇒
(

∂p

∂v

)

T

=

(

2a

RTv3
− v

v2 − b2

)

p .

Thus, setting
( ∂p
∂v

)

T
= 0 yields the equation

2a

b2RT
=

u4

u2 − 1
≡ ϕ(u) ,

where u ≡ v/b. Differentiating ϕ(u), we find it has a unique minimum at u∗ =
√
2, where

ϕ(u∗) = 4. Thus,

Tc =
a

2b2R
, vc =

√
2 b , pc =

a

2eb2
.

(b) In terms of p̄, v̄, and T̄ , we have the universal equation of state

p̄ =
T̄√

2v̄2 − 1
exp

(

1− 1

T̄ v̄2

)

.

(c) With p̄ = 1 + π, v̄ = 1 + ǫ, and T̄ = 1 + t, we have from Eq. 7.32 of the Lecture Notes,

ǫL,G = ∓
(

6πǫt
πǫǫǫ

)1/2

(−t)1/2 +O(t) .

From Mathematica we find πǫt = −2 and πǫǫǫ = −16, hence

ǫL,G = ∓
√
3
2
(−t)1/2 +O(t) .
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(2) Consider a nearest neighbor two-state Ising antiferromagnet on a triangular lattice. The
Hamiltonian is

Ĥ = J
∑

〈ij〉
σiσj − H

∑

i

σi ,

with J > 0.

(a) Show graphically that the triangular lattice is tripartite, i.e. that it may be decomposed
into three component sublattices A, B, and C such that every neighbor of A is either B or
C, etc.

(b) Use a variational density matrix which is a product over single site factors, where

ρ(σi) =
1 +m

2
δσ

i
,+1 +

1−m

2
δσ

i
,−1 if i ∈ A or i ∈ B

=
1 +m

C

2
δσ

i
,+1 +

1−m
C

2
δσ

i
,−1 if i ∈ C .

Compute the variational free energy F (m,m
C
, T,H, N).

(c) Find the mean field equations.

(d) Find the mean field phase diagram.

(e) While your mean field analysis predicts the existence of an ordered phase, it turns out
that Tc = 0 for this model because it is so highly frustrated when h = 0. The ground
state is highly degenerate. Show that for any ground state, no triangle can be completely
ferromagnetically aligned. What is the ground state energy? Find a lower bound for the
ground state entropy per spin.

Solution :

(a) See fig. 1.

(b) Of the 3N links of the lattice, N are between A and B sites, N are between A and C
sites, and N are between B and C sites. Thus the mean field energy is

E = NJm2 + 2NJmm
C
− 2

3
NHm− 1

3
NHm

C
.

The entropy of the A and B sublattices is SA = SB = 2
3
Ns(m), while that for the C sublattice

is SC = 1
3
Ns(m

C
), where

s(m) = −
[

(

1 +m

2

)

ln

(

1 +m

2

)

+

(

1−m

2

)

ln

(

1−m

2

)

]

.

The free energy is F = E − TS. We define f ≡ F/2JN , θ ≡ k
B
T/6J , and h ≡ H/6J . Then

f(m,m
C
, θ, h) = 1

2
m2 +mm

C
− 2hm− hm

C
− 2θs(m)− θs(m

C
) .
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Figure 1: The three triangular sublattices of the (tripartite) triangular lattice.

(c) The mean field equations are

∂f

∂m
= 0 = m+m

C
− 2h+ θ ln

(

1 +m

1−m

)

∂f

∂m
C

= 0 = m− h+ 1
2
θ ln

(

1 +m
C

1−m
C

)

.

Equivalently,

m = tanh

(

2h−m−m
C

2θ

)

, m
C
= tanh

(

h−m

θ

)

.

(d) The order parameter for our model is the difference in sublattice magnetizations, ε ≡
m

C
− m. Let us first consider the zero temperature limit, θ → 0, for which the entropy

term makes no contribution in the free energy. We compare two competing states: the
ferromagnetic state with m = m

C
= 1, and the antiferromagnetic state with m = 1 and

m
C
= −1. The energies of these two states are

e0(1, 1, h) =
3
2
− 3h

e0(1,−1, h) = −1
2
− h .

We see that for h < 1 the AF configuration wins (i.e. has lower energy per site e0), while
for h > 1 the F configuration wins. Thus, at θ = 0 there is a first order transition from AF
to F at hc = 1.

Next, let us examine the behavior with θ when h = 0. We can combine the two mean field
equations to give

m+ θ ln

(

1 +m

1−m

)

= tanh
(

m/θ
)

.
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Expanding in powers of m, we equate the coefficient of the linear term on either side to
identify θc and thus we obtain the equation 2θ2 + θ − 1 = (2θ − 1)(θ + 1) = 0, hence
θc(h = 0) = 1

2
.

We identify the order parameter as ε = m
C
− m, the difference in the sublattice magneti-

zations. We now seek the phase boundary h(θ) along which the order parameter vanishes
in the (θ, h) plane. To this end, we write the two mean field equations in terms of m and ε,
rather than m and m

C
. We find

m+ 1
2
ε = h− θ

2
ln

(

1 +m

1−m

)

m = h− θ

2
ln

(

1 +m+ ε

1−m− ε

)

.

Taking the difference, we obtain

ε = θ ln

(

1 + ε
1+m

1− ε
1−m

)

=
2εθ

1−m2
+O

(

ε2
)

.

Along the phase boundary, i.e. in the ε → 0 limit, we therefore have

2θ

1−m2
= 1 .

We also have the mean field equation for m,

m = tanh

(

h−m

θ

)

.

Putting these together, we obtain the curve

h∗(θ) =
√
1− 2θ +

θ

2
ln

(

1 +
√
1− 2θ

1−
√
1− 2θ

)

.

The phase boundary is shown in Fig. 2.

If we eliminate m
C

through the second mean field equation, we can generate the Landau
expansion

f(m, θ, h) = −3 ln(2) θ +
(

θ − 1
2

)(

θ−1 + 1
)

m2 + 1
6

(

θ + 1
2
θ−3
)

m4

− 2θ−1
(

θ − 1
2

)

hm− 1
3
θ−3hm3 +O

(

m6, hm5, h3
)

The full expression f(m,m
C
(m), θ, h) is shown as a function of m for various values of θ

and h in fig. 3. Thus, we obtain a Landau theory with a second order transition at θc =
1
2
.

We retain the O
(

hm3
)

term because the coefficient of hm vanishes at θ = θc. Differentiating
with respect to m, we obtain

∂f

∂m
= 0 = 2θ−1

(

θ + 1
)(

θ − 1
2

)

m+ 1
3
θ−3
(

1 + 2θ4
)

m3 − 2θ−1
(

θ − 1
2

)

h− θ−2hm2
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Figure 2: Phase diagram for the mean field theory of problem 2.

Thus,

m
(

θ, hc
)

=
√
2
(

θc − θ
)1/2

+
+O

(

|θ − θc|3/2
)

m
(

θ, h
)

= 2
3
h+O

(

h3
)

m
(

θc, h
)

= 4
3
h+O

(

h3
)

.

Note that hc = 0. In the second equation, we have ǫ ≡ θ − θc → 0 with ǫ ≫ h, while in
the third equation we have h → 0 with ǫ ≡ 0, so the two equations represent two different
limits. We obtain the exponents α = 0, β = 1

2
, γ = 0, δ = 1. This seemingly violates the

Rushbrooke scaling law α + 2β + γ = 2, but satisfies the Griffiths relation β + γ = βδ.
However, this is because we are using the wrong field. Rather than defining the exponents
γ and δ with respect to a uniform field h, we should instead consider a staggered field hs
such that h

A
= h

B
= hs but h

C
= −hs.

(e) With antiferromagnetic interactions and h = 0, it is impossible for every link on an
odd-membered ring (e.g. a triangle) to be satisfied. This is because on a k-site ring (with
(k + 1) ≡ 1), taking the product of σjσj+1 over all links on the ring gives

(

σ1σ2
)(

σ2σ3
)

· · ·
(

σkσ1
)

= 1 ,

If we assume, however, that each link satisfies the antiferromagnetic interaction, then
σjσj+1 = −1 and the product would be (−1)k = −1 since k is odd. So not all odd-
membered rings can be completely satisfied. Clearly the best we can do on any odd-
membered ring is to have k − 1 of the bonds antiferromagnetically aligned and the re-
maining bond ferromagnetically aligned.

Now let us decompose the triangular lattice into A, B, and C sublattices. If we place all
spins on the A and B sublattices are up (σ = +1) and all spins on the C sublattice are
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Figure 3: Free energy for the mean field theory of problem 2 at ten equally spaced dimen-
sionless temperatures between θ = 0.0 and θ = 0.9. Bottom panel: h = 0; middle panel:
h = 0.3; top panel: h = 1.3.

down (σ = −1), then each elementary triangle has two AF bonds and one F bond, which
is the best we can do for the nearest neighbor triangular lattice Ising antiferromagnet. The
energy of this configuration is given in part (b) above: E = NJm2 + 2NJmm

C
= −NJ ,

since m = 1 and m
C
= −1. However, it is clear that at each site of the B sublattice, the

choice of σi is arbitrary. This is because one third of all the links on the lattice are AC links,
and they are already antiferromagnetically aligned. Now there are 1

3
N sites on each of the

sublattices, hence we have identified 2N/3 degenerate ground states. This set of ground
state configurations is not complete, however. We could immediately double it simply by
choosing to reverse spins on the A sublattice instead, leaving the B sublattice with m

B
= 1.

But even this enumeration is not complete – we have simply identified a lower bound to
the number of degenerate ground states. The ground state entropy per spin is then

S0

N
≥ 1

3
ln 2 ≈ 0.23105 .
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The exact value, obtained by Wannier and by Houtappel in 1950, is s0 ≈ 0.3231 per spin.
So there are exponentially (in the system size!) many more ground states than we have
identified here.

And now, a disappointment. It turns out that at h = 0, the model is exactly solvable, and
there is no phase transition at any temperature θ. The ground state at θ = 0 has finite
entropy per site, as we have discussed. For finite h ∈ (0, 1) , there is a finite θc(h) which
goes to zero as one approaches either endpoint. Thus, the actual phase diagram is quite
different than that in Fig. 3. The boundary of the ordered phase does not intersect the θ
axis at a finite value, but instead bends back and intersects the origin.

(3) Consider a spin-S magnet on a cubic lattice system with mixed ferromagnetic and
antiferromagnetic interactions:

Jij =











+J1 > 0 6 nearest neighbors

−J2 < 0 12 next-nearest neighbors

0 otherwise .

(a) Find Ĵ(q). Show that the ordering wavevector Q depends on the ratio r = J2/J1 ,
with Q = 0 for r < rc and Q 6= 0 for r > rc. Find rc and Q in the latter regime. In
general Q is incommensurate with the lattice. Such a system is called a helimagnet.
Hint : Assume Q = Q(x̂+ ŷ + ẑ), which is consistent with the cubic symmetry.

(b) Find the critical temperature Tc where order sets in for the cases r < rc and r > rc.

(c) Find the uniform susceptibility χ(T ) ≡ χ̂(q = 0, T ). Over what range of r is it
resembling that of a Curie-Weiss ferromagnet, i.e. with a positive T -axis intercept for
χ−1(T ), and over what range is it resembling that of a Curie-Weiss antiferromagnet,
i.e. with a negative T -axis intercept for χ−1(T )?

Solution :

(a) We have

Ĵ(q) = 2J1
[

cos(qxa) + cos(qya) + cos(qza)
]

− 4J2
[

cos(qxa) cos(qya) + cos(qxa) cos(qza) + cos(qya) cos(qza)
]

.

Taking q ≡ q (x̂+ ŷ + ẑ), we define c ≡ cos(qa), in which case

Ĵ(q) = 6J1
(

c− 2rc2
)

,

with r ≡ J2/J1. Differentiating to find the value q = Q which maximizes Ĵ(q), we find
c = 1/4r, which is only possible if r > 1

4
. If r < 1

4
, the maximum occurs at c = 1, i.e. Q = 0.

Thus, the ordering wavevector is then

Qa =

{

0 if J2 <
1
4
J1

cos−1(J1/4J2) if J2 >
1
4
J1 .
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(b) For r > 1
4

the order is in general incommensurate with the lattice, meaning Qa is not any

rational multiple of 2π. The maximum value of Ĵ(q) is

Ĵ(Q) =

{

6(J1 − 2J2) if J2 <
1
4
J1

3J2
1 /4J2 if J2 >

1
4
J1 ,

and therefore
k
B
Tc

6J1
=

{

(1− 2r) if r < 1
4

1/8r if r > 1
4

.

Note that Tc(J1, r) is continuous at the transition to the incommensurate phase (r = 1
4
).

(c) The uniform susceptibility is

χ(T ) =
1

χ−1(T )− Ĵ(0)
=

[

3k
B
T

S(S + 1)
− (6J1 − 12J2)

]−1

=
S(S + 1)/3k

B

T − (1− 2r)T1

,

where T1 ≡ 2J1/S(S+1)k
B

. The intercept is at T ∗ = (1−2r)T1. Thus, in the commensurate
phase, where r < 1

4
, T ∗ is always positive, which is to say FM-like. In the incommensurate

phase, for r ∈ [1
4
, 1
2
), T ∗ remains positive, but switches sign to the AF-like case for r > 1

2
.
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