PHYSICS 210A : STATISTICAL PHYSICS
 HW ASSIGNMENT \#6 SOLUTIONS

(1) Consider the one-dimensional Ising model with next-nearest neighbor interactions,

$$
\hat{H}=-J \sum_{n} \sigma_{n} \sigma_{n+1}-K \sum_{n} \sigma_{n} \sigma_{n+2},
$$

on a ring with N sites, where N is even. By considering consecutive pairs of sites, show that the partition function may be written in the form $Z=\operatorname{Tr}\left(R^{N / 2}\right)$, where R is a 4×4 transfer matrix. Find R. Hint: It may be useful to think of the system as a railroad trestle, depicted in Fig. 2, with Hamiltonian

$$
\hat{H}=-\sum_{j}\left[J \sigma_{j} \mu_{j}+J \mu_{j} \sigma_{j+1}+K \sigma_{j} \sigma_{j+1}+K \mu_{j} \mu_{j+1}\right] .
$$

Then $R=R_{\left(\sigma_{j} \mu_{j}\right),\left(\sigma_{j+1} \mu_{j+1}\right)}$, with $(\sigma \mu)$ a composite index which takes one of four possible values $(++),(+-),(-+)$, or (--$)$.

Figure 1: Railroad trestle representation of next-nearest neighbor chain.
Solution :
The transfer matrix can be read off from the Hamiltonian:

$$
R_{(\sigma \mu),\left(\sigma^{\prime} \mu^{\prime}\right)}=e^{\beta J \mu\left(\sigma+\sigma^{\prime}\right)} e^{\beta K\left(\sigma \sigma^{\prime}+\mu \mu^{\prime}\right)}
$$

Expressed as a matrix of rank four, with rows and columns corresponding to $\{++,+-,--,-+\}$, we have

$$
R=\left(\begin{array}{cccc}
e^{2 \beta J} e^{2 \beta K} & e^{2 \beta J} & e^{-2 \beta K} & 1 \\
e^{-2 \beta J} & e^{-2 \beta J} e^{2 \beta K} & 1 & e^{-2 \beta K} \\
e^{-2 \beta K} & 1 & e^{2 \beta J} e^{2 \beta K} & e^{-2 \beta J} \\
1 & e^{-2 \beta K} & e^{2 \beta J} & e^{-2 \beta J} e^{2 \beta K}
\end{array}\right)
$$

Querying WolframAlpha for the eigenvalues, we find

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}\left[u v+\left(1+u^{-1}\right) \sqrt{u^{2} v^{2}-2 u v^{2}+4 u+v^{2}}+2 v^{-1}+u^{-1} v\right] \\
& \lambda_{2}=\frac{1}{2}\left[u v+\left(1-u^{-1}\right) \sqrt{u^{2} v^{2}+2 u v^{2}-4 u+v^{2}}-2 v^{-1}+u^{-1} v\right] \\
& \lambda_{3}=\frac{1}{2}\left[u v-\left(1+u^{-1}\right) \sqrt{u^{2} v^{2}-2 u v^{2}+4 u+v^{2}}+2 v^{-1}+u^{-1} v\right] \\
& \lambda_{4}=\frac{1}{2}\left[u v-\left(1-u^{-1}\right) \sqrt{u^{2} v^{2}+2 u v^{2}-4 u+v^{2}}-2 v^{-1}+u^{-1} v\right],
\end{aligned}
$$

where $u=e^{2 \beta J}$ and $v=e^{2 \beta K}$. The partition function on a ring of N sites, with N even, is

$$
Z=\operatorname{Tr}\left(R^{N / 2}\right)=\lambda_{1}^{N / 2}+\lambda_{2}^{N / 2}+\lambda_{3}^{N / 2}+\lambda_{4}^{N / 2} .
$$

It may seem a happy accident that the nonsymmetric matrix R has all real eigenvalues. However, note that

$$
\widetilde{R} \equiv \Sigma R \Sigma=W X
$$

for

$$
\Sigma=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right) \quad, \quad W=\left(\begin{array}{cccc}
\cosh (2 \beta J) & \sinh (2 \beta J) & e^{-2 \beta K} & 0 \\
\sinh (2 \beta J) & \cosh (2 \beta J) & 0 & -e^{-2 \beta K} \\
e^{-2 \beta K} & 0 & \cosh (2 \beta J) & \sinh (2 \beta J) \\
0 & -e^{-2 \beta K} & \sinh (2 \beta J) & \cosh (2 \beta J)
\end{array}\right)
$$

and

$$
X=\left(\begin{array}{cccc}
e^{2 \beta K}+1 & 0 & 0 & 0 \\
0 & e^{2 \beta K}-1 & 0 & 0 \\
0 & 0 & e^{2 \beta K}+1 & 0 \\
0 & 0 & 0 & e^{2 \beta K}-1
\end{array}\right)
$$

Note that $\Sigma^{2}=1$, hence $\Sigma^{-1}=\Sigma$. Thus,

$$
R=\Sigma W X \Sigma=\Sigma X^{-1 / 2}\left(X^{1 / 2} W X^{1 / 2}\right) X^{1 / 2} \Sigma
$$

and we find R is related by similarity transformation to the symmetric matrix $X^{1 / 2} W X^{1 / 2}$. Here we assume $K>0$ so $e^{2 \beta K} \pm 1>0$ and we may take the square root of X. If $K<0$ one readily obtains a similar construction.
C. Aganze notes that we may define ${ }^{1} \nu_{n} \equiv \sigma_{n} \sigma_{n+1}$, in which case $\nu_{n} \nu_{n+1}=\sigma_{n} \sigma_{n+2}$, and our Hamiltonian becomes

$$
\hat{H}=-K \sum_{n} \nu_{n} \nu_{n+1}-J \sum_{n} \nu_{n},
$$

i.e. a nearest neighbor Ising model with ferromagnetic exchange K and a field $h=J$. From the lecture notes, we know that the eigenvalues of the transfer matrix are given by

$$
\begin{aligned}
\Lambda_{ \pm} & =e^{\beta K} \cosh (\beta J) \pm \sqrt{e^{2 \beta K} \sinh ^{2}(\beta J)+e^{-2 \beta K}} \\
& =\frac{1}{2}(u v)^{-1 / 2}\left\{(1+u) v \pm \sqrt{(u-1)^{2} v^{2}+4 u}\right\} .
\end{aligned}
$$

It is now easy to show that $\Lambda_{+}^{2}=\lambda_{1}$, whence the equality of the partition functions in the thermodynamic limit $N \rightarrow \infty$ is manifest.: $\Lambda_{+}^{N}=\lambda_{1}^{N / 2}$. Note that on a ring, there is a constraint $\prod_{n=1}^{N} \nu_{n}=1$ which must be satisfied.

[^0](2) For each of the cluster diagrams in Fig. 2, find the symmetry factor s_{γ} and write an expression for the cluster integral b_{γ}.

Figure 2: Cluster diagrams for problem 2.
Solution :
Choose labels as in Fig. 3, and set $x_{n_{\gamma}} \equiv 0$ to cancel out the volume factor in the definition of b_{γ}.

(a)

(b)

(d)

Figure 3: Labeled cluster diagrams.
(a) The symmetry factor is $s_{\gamma}=2$, so

$$
b_{\gamma}=\frac{1}{2} \int d^{d} x_{1} \int d^{d} x_{2} \int d^{d} x_{3} \int d^{d} x_{4} f\left(r_{12}\right) f\left(r_{13}\right) f\left(r_{24}\right) f\left(r_{34}\right) f\left(r_{4}\right) .
$$

(b) Sites 1, 2, and 3 may be permuted in any way, so the symmetry factor is $s_{\gamma}=6$. We then have

$$
b_{\gamma}=\frac{1}{6} \int d^{d} x_{1} \int d^{d} x_{2} \int d^{d} x_{3} \int d^{d} x_{4} f\left(r_{12}\right) f\left(r_{13}\right) f\left(r_{24}\right) f\left(r_{34}\right) f\left(r_{14}\right) f\left(r_{23}\right) f\left(r_{4}\right) .
$$

(c) The diagram is symmetric under reflections in two axes, hence $s_{\gamma}=4$. We then have

$$
b_{\gamma}=\frac{1}{4} \int d^{d} x_{1} \int d^{d} x_{2} \int d^{d} x_{3} \int d^{d} x_{4} \int d^{d} x_{5} f\left(r_{12}\right) f\left(r_{13}\right) f\left(r_{24}\right) f\left(r_{34}\right) f\left(r_{35}\right) f\left(r_{4}\right) f\left(r_{5}\right) .
$$

(d) The diagram is symmetric with respect to the permutations (12), (34), (56), and (15)(26).

Thus, $s_{\gamma}=2^{4}=16$. We then have
$b_{\gamma}=\frac{1}{16} \int d^{d} x_{1} \int d^{d} x_{2} \int d^{d} x_{3} \int d^{d} x_{4} \int d^{d} x_{5} f\left(r_{12}\right) f\left(r_{13}\right) f\left(r_{14}\right) f\left(r_{23}\right) f\left(r_{24}\right) f\left(r_{34}\right) f\left(r_{35}\right) f\left(r_{45}\right) f\left(r_{3}\right) f\left(r_{4}\right) f\left(r_{5}\right)$.
(3) Compute the partition function for the one-dimensional Tonks gas of hard rods of length a on a ring of circumference L. This is slightly tricky, so here are some hints. Once again, assume a particular ordering so that $x_{1}<x_{2}<\cdots<x_{N}$. Due to translational invariance, we can define the positions of particles $\{2, \ldots, N\}$ relative to that of particle 1, which we initially place at $x_{1}=0$. Then periodicity means that $x_{N} \leq L-a$, and in general one then has

$$
x_{j-1}+a \leq x_{j} \leq L-(N-j+1) a .
$$

Now integrate over $\left\{x_{2}, \ldots, x_{N}\right\}$ subject to these constraints. Finally, one does the x_{1} integral, which is over the entire ring, but which must be corrected to eliminate overcounting from cyclic permutations. How many cyclic permutations are there?

Solution :
There are N cyclic permutations, hence the last x_{1} integral yields L / N, and

$$
Z(T, L, N)=\lambda_{T}^{-N} \frac{L}{N} \int_{a}^{Y_{2}} d x_{2} \int_{x_{2}+a}^{Y_{3}} d x_{3} \cdots \int_{x_{N-1}+a}^{Y_{N}} d x_{N}=\frac{L(L-N a)^{N-1} \lambda_{T}^{-N}}{N!} .
$$

[^0]: ${ }^{1}$ See also $\S 6.2 .4$ of the Lecture Notes.

