
PHYSICS 210A : STATISTICAL PHYSICS

HW ASSIGNMENT #5 SOLUTIONS

(1) Using the argument we used in class and in §5.5.3 of the notes, predict the surface
temperatures of the remaining planets in our solar system. In each case, compare your
answers with the most reliable source you can find. In cases where there are discrepancies,
try to come up with a convincing excuse.

Solution :

Relevant planetary data are available from Wikipedia. According to the derivation in the
notes, we have

T =

(

R⊙

2a

)1/2

T⊙ ,

where R⊙ = 6.96 × 105 km and T⊙ = 5780K. From this equation and the reported values
for a for each planet, we obtain the following table:

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto

a (108 km) 0.576 1.08 1.50 2.28 7.78 14.3 28.7 45.0 59.1

T obs
surf (K) 340∗ 735† 288† 210 112 84 53 55 44

T pred
surf (K) 448 327 278 226 122 89.1 63.6 50.8 44.3

Table 1: Planetary data from GSU web site and from Wikipedia. Observed temperatures
are averages. ∗ mean equatorial temperature. † mean temperature below cloud cover.

Note that we have included Pluto, because since my childhood Pluto has always been the
ninth planet to me. We see that our simple formula works out quite well except for Mer-
cury and Venus. Mercury, being so close to the sun, has enormous temperature fluctuations
as a function of location. Venus has a whopping greenhouse effect.

(2) Read carefully the new and improved §5.6.4 of the lecture notes (“Melting and the
Lindemann criterion”). Using the data in Table 5.1, and looking up the atomic mass and
lattice constant of tantalum (Ta), find the temperature T

L
where the Lindemann criterion

predicts Ta should melt.

Solution :

One finds the mass of tantalum is M = 181 amu, and the lattice constant is a = 3.30 Å.
Thus,

Θ⋆ =
109K

M [amu]
(

a[Å]
)2 = 55.3mK .

From the table in the lecture notes, the Debye temperature is Θ
D
= 246K and the melting
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point is Tmelt = 2996K. The Lindemann temperature is

TL =

(

η2 Θ
D

Θ⋆
− 1

)

Θ
D

4
= 2674K ,

where η = 0.10. Close enough for government work.

(3) Consider a two-dimensional gas of fermions which obey the dispersion relation

ε(k) = ε0

(

(k2x + k2y) a
2 + 1

2 (k
4
x + k4y) a

4
)

.

Sketch, on the same plot, the Fermi surfaces for εF = 0.1 ε0, εF = ε0, and εF = 10 ε0.

Solution :

It is convenient to adimensionalize, writing

x ≡ kxa , y ≡ kya , ν ≡ ε

ε0
. (1)

Then the equation for the Fermi surface becomes

x2 + y2 + 1
2x

4 + 1
2y

4 = ν . (2)

In other words, we are interested in the level sets of the function ν(x, y) ≡ x2+y2+ 1
2x

4+ 1
2y

4.
When ν is small, we can ignore the quartic terms, and we have an isotropic dispersion, with
ν = x2 + y2. I.e. we can write x = ν1/2 cos θ and y = ν1/2 sin θ. The quartic terms give a
contribution of order ν4, which is vanishingly small compared with the quadratic term in
the ν → 0 limit. When ν ∼ O(1), the quadratic and quartic terms in the dispersion are of
the same order of magnitude, and the continuous O(2) symmetry, namely the symmetry
under rotation by any angle, is replaced by a discrete symmetry group, which is the group
of the square, known as C4v in group theory parlance. This group has eight elements:

{

I , R , R2 , R3 , σ , σR , σR2 , σR3
}

(3)

Here R is the operation of counterclockwise rotation by 90◦, sending (x , y) to (−y , x), and
σ is reflection in the y-axis, which sends (x , y) to (−x , y). One can check that the function
ν(x, y) is invariant under any of these eight operations from C4v.

Explicitly, we can set y = 0 and solve the resulting quadratic equation in x2 to obtain the
maximum value of x, which we call a(ν). One finds

1
2x

4 + x2 − ν = 0 =⇒ a =

√√
1 + 2ν − 1 .

So long as x ∈ {−a, a}, we can solve for y(x):

y(x) = ±
√

√

1 + 2ν − 2x2 − x4 − 1 .

A sketch of the level sets, showing the evolution from an isotropic (i.e. circular) Fermi
surface at small ν, to surfaces with discrete symmetries, is shown in fig. 1.
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Figure 1: Level sets of the function ν(x, y) = x2+y2+ 1
2x

4+ 1
2y

4 for ν = (12n)
4, with positive

integer n.

(4) Show that the chemical potential of a three-dimensional ideal nonrelativistic Fermi gas
is given by

µ(n, T ) = εF

[

1− π2

12

(

k
B
T

εF

)2

− π4

80

(

k
B
T

εF

)4

+ . . .

]

and the average energy per particle is

E

N
= 3

5 εF

[

1 +
5π2

12

(

k
B
T

ε
F

)2

− π4

16

(

k
B
T

ε
F

)4

+ . . .

]

,

where µ0(n) is the Fermi energy at T = 0. Compute the heat capacity CV (T ) to terms of
order T 3. How does the T 3 contribution to the electronic heat capacity compare with the
contribution from phonons?

Solution :

3



From the Sommerfeld expansion we have

∞
∫

−∞

dεφ(ε) f(ε − µ) =

µ
∫

−∞

dεφ(ε) +
π2

6
(k

B
T )2 φ′(µ) +

7π4

360
(k

B
T )4 φ′′′(µ) +O(T 6)

=

{

1 +
π2

6
(k

B
T )2

d2

dµ2
++

7π4

360
(k

B
T )2

d4

dµ4
+O(T 6)

}

Φ(µ) ,

where φ(ε) = Φ′(ε). Let’s work this out to second order in T 2 for the case φ(ε) = g(ε). The

integral then gives the overall density n. We write µ = εF + δµ and expand the RHS to
second order in δµ. Thus yields

n =

ε
F

∫

−∞

dε g(ε) + g(εF) δµ + 1
2g

′(εF) (δµ)
2 + . . .

+
π2

6
(k

B
T )2 g′(εF) +

π2

6
(k

B
T )2 g′′(εF) δµ + . . .

+
7π4

360
(k

B
T )4 g′′′(εF) + . . . .

RHS of the first line above comes from expanding the integral in the first term on the RHS
of the previous equation to second order in δµ. The subsequent lines come from the ex-
pansions of the second and third terms on the RHS of the previous equation, respectively.
We expand out to the necessary order in each case. From this equation we thus obtain

δµ = −π2

6
(k

B
T )2

g′(ε
F
)

g(ε
F
)
− π4

36
(k

B
T )4 ·

[

1

2

(

g′(ε
F
)

g(ε
F
)

)3

− g′(ε
F
) g′′(ε

F
)

g2(ε
F
)

+
7

10

g′′′(ε
F
)

g(ε
F
)

]

+ . . .

If we assume that g(ε) is a homogeneous function with g(ε) ∝ εα, then find

δµ = −απ2

6

(k
B
T )2

εF
− α(α − 2)(2α − 7)

π4

360

(k
B
T )4

ε3
F

+O(T 6) .

Substituting α = 1
2 , as is appropriate for three-dimensional ballistic fermions, we obtain

δµ = −π2

12

(k
B
T )2

εF
− π4

80

(k
B
T )4

ε3
F

+O(T 6) ,

which is the desired result.

The result for the energy is tedious to carry out by hand, but is rather straightforward
using a symbolic manipulation program such as Mathematica or Maple. We assume the
density of states is of the form g(ε) = Cεα. Then from the Sommerfeld expansion we have

E

V
=

Cµα+2

α+ 2

{

1 + α(α + 1)
π2

6

(

k
B
T

µ

)2

+ (α− 2)(α − 1)α(α + 1)
7π4

360

(

k
B
T

µ

)4

+ . . .

}

N

V
=

Cµα+1

α+ 2

{

1 + (α− 1)α
π2

6

(

k
B
T

µ

)2

+ (α− 3)(α − 2)(α − 1)α
7π4

360

(

k
B
T

µ

)4

+ . . .

}
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Carefully taking the ratio and evaluating to order T 4, we find

E

N
=

(

α+ 1

α+ 2

)

µ ·
{

1 + (α+ 1)
π2

3

(

k
B
T

µ

)2

+ α(α + 1)(α − 6)
π4

45

(

k
B
T

µ

)4

+ . . .

}

.

Unfortunately we’re not quite done, since we now must expand µ in a power series in T ,
invoking our previous result. Working this out (by hand!), I obtain

E

N
=

(

α+ 1

α+ 2

)

ε
F
·
{

1 + (α+ 2)
π2

6

(

k
B
T

εF

)2

+ α(α+ 2)(2α − 7)
π4

120

(

k
B
T

εF

)4

+O(T 6)

}

.

Setting α = 1
2 we have 1

6(α + 2) = 5
12 and 1

120α(α + 2)(2α − 7) = − 1
16 , as indicated in the

statement of the problem. Our formula holds for general α, so we can find the result for
d = 2 by setting α = 0.

The heat capacity is

CV,N =

(

∂E

∂T

)

V,N

= Nk
B

{

(α + 1)
π2

3

(

k
B
T

εF

)

+ α(α + 1)(2α − 7)
π4

30

(

k
B
T

εF

)3

+O(T 5)

}

.

In d = 3, with α = 1
2 , the order T 3 term is − 3

20π
4(k

B
T/ε

F
)3Nk

B
. The low temperature

phonon contribution is C
(phonon)
V = 12

5 π
4 (T/ΘD)

3Nk
B

, where Θ
D

is the Debye temperature.
The ratio is

∆C
(elec)
V

C
(phonon)
V

= − 1

16

(

Θ
D

T
F

)3

.

Since Θ
D

is typically hundreds of K while T
F

is tens of thousands of K, this ratio is on the
order of 10−7.

(5) Consider a three-dimensional Bose gas of particles which have two internal polariza-
tion states, labeled by σ = ±1. The single particle energies are given by

ε(p, σ) =
p2

2m
+ σ∆ ,

where ∆ > 0.

(a) Find the density of states per unit volume g(ε).

(b) Find an implicit expression for the condensation temperature Tc(n,∆). When ∆ →
∞, your expression should reduce to the familiar one derived in class.

(c) When ∆ = ∞, the condensation temperature should agree with the familiar result
for three-dimensional Bose condensation. Assuming ∆ ≫ k

B
Tc(n,∆ = ∞), find

analytically the leading order difference Tc(n,∆)− Tc(n,∆ = ∞).
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Solution :

(a) Let g0(ε) be the DOS per unit volume for the case ∆ = 0. Then

g0(ε) dε =
d3k

(2π)3
=

k2 dk

2π2
⇒ g0(ε) =

√
2m3

2π2~3
ε1/2 Θ(ε) .

For finite ∆, the single particle energies are shifted uniformly by ±∆ for the σ = ±1 states,
hence

g(ε) = g0(ε+∆) + g0(ε−∆) .

(b) For Bose statistics, we have in the uncondensed phase,

n =

∞
∫

−∞

dε
g(ε)

e(ε−µ)/k
B
T − 1

= Li3/2

(

e(µ+∆)/k
B
T
)

λ−3
T + Li3/2

(

e(µ−∆)/k
B
T
)

λ−3
T .

In the condensed phase, µ = −∆−O(N−1) is pinned just below the lowest single particle
energy, which occurs for k = p/~ = 0 and σ = −1. We then have

n = n0 + ζ(3/2)λ−3
T + Li3/2

(

e−2∆/k
B
T
)

λ−3
T .

To find the critical temperature, set n0 = 0 and µ = −∆:

n = ζ(3/2)λ−3
Tc

+ Li3/2

(

e−2∆/k
B
Tc

)

λ−3
Tc

.

This is a nonlinear and implicit equation for Tc(n,∆). When ∆ = ∞, we have

k
B
T∞
c (n) =

2π~2

m

(

n

ζ(3/2)

)2/3

.

(c) For finite ∆, we still have the implicit nonlinear equation to solve, but in the limit
∆ ≫ k

B
Tc, we can expand Tc(∆) = T∞

c + ∆Tc(∆). We may then set Tc(n,∆) to T∞
c (n) in

the second term of our nonlinear implicit equation, move this term to the LHS, whence

ζ(3/2)λ−3
Tc

≈ n− Li3/2

(

e−2∆/k
B
T∞

c

)

λ−3
T∞

c

.

which is a simple algebraic equation for Tc(n,∆). The second term on the RHS is tiny since
∆ ≫ k

B
T∞
c . We then find

Tc(n,∆) = T∞
c (n)

{

1− 3
2 e

−2∆/k
B
T∞

c (n) +O
(

e−4∆/k
B
T∞

c (n)
)

}

.

6


