PHYSICS 210A : STATISTICAL PHYSICS HW ASSIGNMENT \#4 SOLUTIONS

(1) $\nu=8$ moles of a diatomic ideal gas are subjected to a cyclic quasistatic process, the thermodynamic path for which is an ellipse in the (V, p) plane. The center of the ellipse lies at $\left(V_{0}, p_{0}\right)=\left(0.25 \mathrm{~m}^{3}, 1.0 \mathrm{bar}\right)$. The semimajor and semiminor axes of the ellipse are $\Delta V=0.10 \mathrm{~m}^{3}$ and $\Delta p=0.20$ bar.
(a) What is the temperature at $(V, p)=\left(V_{0}+\Delta V, p_{0}\right)$?
(b) Compute the net work per cycle done by the gas.
(c) Compute the internal energy difference $E\left(V_{0}-\Delta V, p_{0}\right)-E\left(V_{0}, p_{0}-\Delta p\right)$.
(d) Compute the heat Q absorbed by the gas along the upper half of the cycle.

Solution :
(a) The temperature is $T=p V / \nu R$. With $V=V_{0}+\Delta V=0.35 \mathrm{~m}^{3}$ and $p=p_{0}=1.0$ bar, we have

$$
T=\frac{\left(10^{5} \mathrm{~Pa}\right)\left(0.35 \mathrm{~m}^{3}\right)}{(8 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \mathrm{~K})}=530 \mathrm{~K}
$$

(b) The area of an ellipse is π times the product of the semimajor axis lengths.

$$
\oint p d V=\pi(\Delta p)(\Delta V)=\pi\left(0.20 \times 10^{6} \text { bar }\right)\left(0.10 \mathrm{~m}^{3}\right)=6.3 \mathrm{~kJ} .
$$

(c) For a diatomic ideal gas, $E=\frac{5}{2} p V$. Thus,

$$
\Delta E=\frac{5}{2}\left(V_{0} \Delta p-p_{0} \Delta V\right)=\frac{5}{2}\left(-0.05 \times 10^{5} \mathrm{~J}\right)=-13 \mathrm{~kJ} .
$$

(d) We have $Q=\Delta E+W$, with

$$
W=2 p_{0} \Delta V+\frac{\pi}{2}(\Delta p)(\Delta V)=23 \mathrm{~kJ},
$$

which is the total area under the top half of the ellipse. The difference in energy is given by $\Delta E=\frac{5}{2} p_{0} \cdot 2 \Delta V=5 p_{0} \Delta V$, so

$$
Q=\Delta E+W=7 p_{0} \Delta V+\frac{\pi}{2}(\Delta p)(\Delta V)=73 \mathrm{~kJ}
$$

(2) Consider a thermodynamic system for which $E(S, V, N)=a S^{4} / N V^{2}$.
(a) Find the equation of state $p=p(T, V, N)$.
(b) Find the equation of state $\mu=\mu(T, p)$.
(c) ν moles of this substance are taken through a Joule-Brayton cycle. The upper isobar lies at $p=p_{2}$ and extends from volume $V_{\mathbf{A}}$ to $V_{\mathbf{B}}$. The lower isobar lies at $p=p_{1}$. Find the volumes V_{C} and V_{D}.
(d) Find the work done per cycle W_{cyc}, the heat Q_{AB}, and the cycle efficiency.

Solution :

(a) We can find

$$
p=-\left(\frac{\partial E}{\partial V}\right)_{S, N}=\frac{2 a S^{4}}{N V^{3}} \quad, \quad T=\left(\frac{\partial E}{\partial S}\right)_{V, N}=\frac{4 a S^{3}}{N V^{2}} \quad, \quad \mu=\left(\frac{\partial E}{\partial N}\right)_{S, V}=-\frac{a S^{4}}{N^{2} V^{2}}
$$

but we need to eliminate the inconvenient variable S from these equations. To do this, we construct the ratio p^{3} / T^{4}, in which the S factors manifestly cancel. One then finds $32 a p^{3} V=N T^{4}$, i.e.

$$
p(T, V, N)=(32 a)^{-1 / 3}\left(\frac{N}{V}\right)^{1 / 3} T^{4 / 3}
$$

This means, for example, that the equation for an isotherm (at fixed N) is $p V^{1 / 3}=$ const., in contrast to the result for the ideal gas isotherm, $p V=$ const. Note also that p, being intensive, must be expressible as $p(T, V / N)$, which it is.
(b) To obtain $\mu(T, p)$, note that $2 N \mu=-p V$, and from our result for $p(T, V / N)$ we have $V / N=T^{4} / 32 a p^{3}$. Thus,

$$
\mu(T, p)=-\frac{T^{4}}{64 a p^{2}}
$$

(c) The equilibrium adiabatic equation of state for this system is $d S=0$. From (a), we see that at fixed N this means $p V^{3}=$ const., so we must have $p_{2} V_{\mathrm{B}}^{3}=p_{1} V_{\mathrm{C}}^{3}$ and $p_{2} V_{\mathrm{A}}^{3}=p_{1} V_{\mathrm{D}}^{3}$. Hence

$$
V_{\mathrm{C}}=V_{\mathrm{B}} \cdot\left(p_{2} / p_{1}\right)^{1 / 3} \quad, \quad V_{\mathrm{D}}=V_{\mathrm{A}} \cdot\left(p_{2} / p_{1}\right)^{1 / 3} .
$$

(a) From part (a), the energy for our system is $E=\frac{1}{2} p V$. Along the upper $\left(p_{2}\right)$ isochore,

$$
W_{\mathrm{AB}}=\int_{\mathrm{A}}^{\mathrm{B}} d V p_{2}=p_{2}\left(V_{\mathrm{B}}-V_{\mathrm{A}}\right) \quad, \quad \Delta E_{\mathrm{AB}}=E_{\mathrm{B}}-E_{\mathrm{A}}=\frac{1}{2} p_{2}\left(V_{\mathrm{B}}-V_{\mathrm{A}}\right),
$$

hence

$$
Q_{\mathrm{AB}}=\Delta E_{\mathrm{AB}}+W_{\mathrm{AB}}=\frac{3}{2} p_{2}\left(V_{\mathrm{B}}-V_{\mathrm{A}}\right) .
$$

The work along the lower $\left(p_{1}\right)$ isochore is

$$
W_{\mathrm{CD}}=p_{1}\left(V_{\mathrm{D}}-V_{\mathrm{C}}\right)=p_{2}\left(V_{\mathrm{A}}-V_{\mathrm{B}}\right)\left(\frac{p_{1}}{p_{2}}\right)^{2 / 3} .
$$

Along the BC adiabat,

$$
W_{\mathrm{BC}}=\int_{\mathrm{B}}^{\mathrm{C}} p d V=p_{2} V_{\mathrm{B}}^{3} \int_{V_{\mathrm{B}}}^{V_{\mathrm{C}}} \frac{d V}{V^{3}}=\frac{1}{2} p_{2} V_{\mathrm{B}}\left(1-\frac{V_{\mathrm{B}}^{2}}{V_{\mathrm{C}}^{2}}\right)=\frac{1}{2} p_{2} V_{\mathrm{B}}\left[1-\left(\frac{p_{1}}{p_{2}}\right)^{2 / 3}\right] .
$$

Similarly,

$$
W_{\mathrm{DA}}=\int_{\mathrm{D}}^{\mathrm{A}} p d V=p_{2} V_{\mathrm{A}}^{3} \int_{V_{\mathrm{D}}}^{V_{\mathrm{A}}} \frac{d V}{V^{3}}=\frac{1}{2} p_{2} V_{\mathrm{A}}\left(\frac{V_{\mathrm{A}}^{2}}{V_{\mathrm{D}}^{2}}-1\right)=\frac{1}{2} p_{2} V_{\mathrm{A}}\left[\left(\frac{p_{1}}{p_{2}}\right)^{2 / 3}-1\right] .
$$

Adding up all the individual works, we get

$$
\begin{aligned}
W_{\mathrm{cyc}} & =W_{\mathrm{AB}}+W_{\mathrm{BC}}+W_{\mathrm{CD}}+W_{\mathrm{DA}} \\
& =\frac{3}{2} p_{2}\left(V_{\mathrm{B}}-V_{\mathrm{A}}\right)\left[1-\left(\frac{p_{1}}{p_{2}}\right)^{2 / 3}\right] .
\end{aligned}
$$

Dividing by Q_{AB}, we obtain the efficiency,

$$
\eta=\frac{W_{\mathrm{cyc}}}{Q_{\mathrm{AB}}}=1-\left(\frac{p_{1}}{p_{2}}\right)^{2 / 3} .
$$

(3) A diatomic gas obeys the equation of state

$$
p=\frac{R T}{v-b}-\frac{a}{v^{2}}+\frac{c R T}{v^{3}},
$$

where a, b, and c are constants.
(a) Find the adiabatic equation of state relating temperature T and molar volume v.
(b) What is the internal energy per mole, $\varepsilon(T, v)$?
(c) What is the Helmholtz free energy per mole, $f(T, v)$?

Solution :
(a) Let ε be the molar internal energy and v the molar volume. We have already shown

$$
\left(\frac{\partial \varepsilon}{\partial v}\right)_{T}=T\left(\frac{\partial p}{\partial T}\right)_{v}-p
$$

Thus, for our system,

$$
\left(\frac{\partial \varepsilon}{\partial v}\right)_{T}=\frac{a}{v^{2}} \Rightarrow \varepsilon(T, v)=\frac{5}{2} R T-\frac{a}{v},
$$

where the first term is the result for the rarefied limit $v \rightarrow \infty$, where the gas presumably becomes ideal. Now if $s=S / \nu$ is the molar entropy ($\nu=N / N_{\mathrm{A}}$ is the number of moles), then

$$
T d s=d \varepsilon+p d v=\frac{5}{2} R d T+R T \frac{d v}{v-b}+c R T \frac{d v}{v^{3}} .
$$

Dividing by T and then integrating, we have

$$
s(T, v)=R \ln \left[T^{5 / 2}(v-b) e^{-c / 2 v^{2}}\right]+\text { const. . }
$$

Thus, the equation of the adiabat is

$$
T^{5 / 2}(v-b) e^{-c / 2 v^{2}}=\text { const }
$$

(b) We have already obtained the result

$$
\varepsilon(T, v)=\frac{5}{2} R T-\frac{a}{v}
$$

(c) From $f=\varepsilon-T s$, where $f=F / \nu$ is the Helmholtz free energy per mole, we have

$$
f(T, v)=\frac{5}{2} R T-\frac{a}{v}-\frac{5}{2} R T \ln \left(\frac{b R T}{a}\right)-R T \ln \left(\frac{v-b}{b}\right)+\frac{c R T}{2 v^{2}}-T s_{0} .
$$

Here we have inserted constants with the proper dimensions in order to render our expression for f with the appropriate dimensions. Thus, the constant s_{0} has dimensions of $\mathrm{J} / \mathrm{mol} \cdot \mathrm{K}$, the same as the gas constant R. Since c / b^{2} is dimensionless, there is more than one way to do this. Any resulting differences will show up in a different expression for s_{0}.
(4) Consider the thermodynamics of a solid in equilibrium with a vapor at temperature T and pressure p, but separated by a quasi-liquid layer of thickness d. Let the number density of the liquid be n_{ℓ}. The Gibbs free energy per unit area of the quasi-liquid layer is taken as

$$
g_{q l l}(T, p)=n_{\ell} \mu_{\ell}(T, p) d+\gamma(d),
$$

where $\gamma(d)$ is an effective surface tension which interpolates between $\gamma(0)=\gamma_{s v}$ and $\gamma(\infty)=\gamma_{s \ell}+\gamma_{\ell v}$. The phenomenon of premelting requires $\gamma(0)>\gamma(\infty)$.
(a) Show that $\mu_{q l l}(T, p)=\mu_{\ell}(T, p)+n_{\ell}^{-1} \gamma^{\prime}(d)=\mu_{s}(T, p)$.
(b) Expand T relative to some point $\left(T_{\mathrm{m}}, p\right)$ along the melting curve to lowest order in $T-T_{\mathrm{m}}$. Show $\Delta \mu(T, p) \equiv \mu_{s}(T, p)-\mu_{\ell}(T, p)=\ell_{\mathrm{m}}\left(T-T_{\mathrm{m}}\right) / T_{\mathrm{m}}$, where ℓ_{m} is the latent heat of melting.
(c) Assume

$$
\gamma(d)=\gamma_{s v}+\left(\gamma_{s \ell}+\gamma_{\ell v}-\gamma_{s v}\right) \cdot \frac{d^{2}}{d^{2}+\sigma^{2}}
$$

where σ is a molecular length scale. Assuming $d \gg \sigma$, find the dependence of the thickness d of the quasi-liquid layer on the reduced temperature $t \equiv\left(T_{\mathrm{m}}-T\right) / T_{\mathrm{m}}$.

Solution :

(a) The chemical potentials of a particle in the solid and the quasi-liquid layers must be the same. Since we use d for thickness, I will here use δ for differential. The Gibbs free energy of the quasi-liquid layer is $G_{q l l}(d)=A g_{q l l}(d)$, where A is the total surface area. The number of particles in the quasi-liquid layer is $N_{q l l}=A n_{q l l} d$. Thus, the chemical potential is potential is then

$$
\mu_{q l l}=\frac{\delta G_{q l l}}{\delta N_{q l l}}=\mu_{\ell}+n_{\ell}^{-1} \gamma^{\prime}(d)
$$

(b) Expanding to first order, with $\Delta \mu=\mu_{\mathrm{s}}-\mu_{\ell}$, we have

$$
\Delta \mu(T, p)=\left(\frac{\partial \Delta \mu}{\partial T}\right)_{p}\left(T-T_{\mathrm{m}}\right)=\frac{\ell_{\mathrm{m}}}{T_{\mathrm{m}}}\left(T-T_{\mathrm{m}}\right)
$$

where ℓ_{m} is the latent heat of melting per molecule. This results in the desired expression $\Delta \mu(T, p)=\ell_{\mathrm{m}}\left(T-T_{\mathrm{m}}\right) / T_{\mathrm{m}}$.

For a more rigorous derivation, expand to first order in both ΔT and Δp :

$$
\begin{aligned}
\Delta \mu(T, p) & =\left(\frac{\partial \Delta \mu}{\partial T}\right)_{p}\left(T-T_{\mathrm{m}}\right)+\left(\frac{\partial \Delta \mu}{\partial p}\right)_{T}\left(p-p_{\mathrm{m}}\right)+\ldots \\
& =\frac{\ell_{\mathrm{m}}}{T_{\mathrm{m}}}\left(T-T_{\mathrm{m}}\right)-\left(\frac{1}{n_{\ell}}-\frac{1}{n_{\mathrm{s}}}\right)\left(p-p_{\mathrm{m}}\right)+\ldots
\end{aligned}
$$

The pressure shift can now be expressed in terms of the temperature shift by examining the slopes of the sublimation and melting lines, via the Clapeyron equation. This results in $\Delta \mu(T, p)=\kappa_{v} \ell_{\mathrm{m}}\left(T-T_{\mathrm{m}}\right) / T_{\mathrm{m}}$, with

$$
\kappa_{v}=1-\frac{(d p / d T)_{\mathrm{subl}}}{(d p / d T)_{\mathrm{melt}}}
$$

For water, $\kappa_{v} \approx 1$ and the correction is negligible.
(c) We now set

$$
\Delta \mu=\frac{1}{n_{\ell}} \frac{\partial \gamma}{\partial d}=\frac{\gamma_{s \ell}+\gamma_{\ell v}-\gamma_{s v}}{n_{\ell}} \cdot \frac{2 \sigma^{2} d}{\left(\sigma^{2}+d^{2}\right)^{2}}=\frac{\kappa_{v} \ell_{\mathrm{m}} \Delta T}{T_{\mathrm{m}}} .
$$

For $d \gg \sigma$, we have

$$
d(t)=\left(-\frac{2 \sigma^{2}\left(\gamma_{s \ell}+\gamma_{\ell v}-\gamma_{s v}\right)}{\ell_{\mathrm{m}} n_{\ell}}\right)^{1 / 3} t^{-1 / 3},
$$

where $t \equiv\left(T-T_{\mathrm{m}}\right) / T_{\mathrm{m}}$.

