PHYSICS 210A : STATISTICAL PHYSICS **HW ASSIGNMENT #4 SOLUTIONS**

(1) $\nu = 8$ moles of a diatomic ideal gas are subjected to a cyclic quasistatic process, the thermodynamic path for which is an ellipse in the (V, p) plane. The center of the ellipse lies at $(V_0, p_0) = (0.25 \,\mathrm{m}^3, 1.0 \,\mathrm{bar})$. The semimajor and semiminor axes of the ellipse are $\Delta V = 0.10 \,\mathrm{m}^3$ and $\Delta p = 0.20 \,\mathrm{bar}$.

- (a) What is the temperature at $(V, p) = (V_0 + \Delta V, p_0)$?
- (b) Compute the net work per cycle done by the gas.
- (c) Compute the internal energy difference $E(V_0 \Delta V, p_0) E(V_0, p_0 \Delta p)$.
- (d) Compute the heat *Q* absorbed by the gas along the upper half of the cycle.

Solution :

(a) The temperature is $T = pV/\nu R$. With $V = V_0 + \Delta V = 0.35 \text{ m}^3$ and $p = p_0 = 1.0 \text{ bar}$, we have

$$T = \frac{(10^{5} \text{ Pa})(0.35 \text{ m}^{3})}{(8 \text{ mol})(8.31 \text{ J/mol K})} = 530 \text{ K}$$

(b) The area of an ellipse is π times the product of the semimajor axis lengths.

$$\oint p \, dV = \pi \, (\Delta p)(\Delta V) = \pi \, (0.20 \times 10^6 \, \text{bar}) \, (0.10 \, \text{m}^3) = 6.3 \, \text{kJ} \, .$$

(c) For a diatomic ideal gas, $E = \frac{5}{2}pV$. Thus,

$$\Delta E = \frac{5}{2} \left(V_0 \,\Delta p - p_0 \,\Delta V \right) = \frac{5}{2} \left(-0.05 \times 10^5 \,\mathrm{J} \right) = -13 \,\mathrm{kJ} \,.$$

(d) We have $Q = \Delta E + W$, with

$$W = 2 p_0 \Delta V + \frac{\pi}{2} (\Delta p) (\Delta V) = 23 \,\mathrm{kJ} \;,$$

which is the total area under the top half of the ellipse. The difference in energy is given by $\Delta E = \frac{5}{2} \, p_0 \cdot 2 \Delta V = 5 \, p_0 \, \Delta V$, so

$$Q = \Delta E + W = 7 p_0 \Delta V + \frac{\pi}{2} (\Delta p) (\Delta V) = 73 \,\mathrm{kJ}$$
.

(2) Consider a thermodynamic system for which $E(S, V, N) = aS^4/NV^2$.

- (a) Find the equation of state p = p(T, V, N).
- (b) Find the equation of state $\mu = \mu(T, p)$.
- (c) ν moles of this substance are taken through a Joule-Brayton cycle. The upper isobar lies at $p = p_2$ and extends from volume V_A to V_B . The lower isobar lies at $p = p_1$. Find the volumes V_C and V_D .
- (d) Find the work done per cycle $W_{\rm cyc}$, the heat $Q_{\rm AB}$, and the cycle efficiency.

Solution :

(a) We can find

$$p = -\left(\frac{\partial E}{\partial V}\right)_{S,N} = \frac{2aS^4}{NV^3} \quad , \quad T = \left(\frac{\partial E}{\partial S}\right)_{V,N} = \frac{4aS^3}{NV^2} \quad , \quad \mu = \left(\frac{\partial E}{\partial N}\right)_{S,V} = -\frac{aS^4}{N^2V^2} \quad ,$$

but we need to eliminate the inconvenient variable *S* from these equations. To do this, we construct the ratio p^3/T^4 , in which the *S* factors manifestly cancel. One then finds $32a p^3 V = NT^4$, *i.e.*

$$p(T, V, N) = (32a)^{-1/3} \left(\frac{N}{V}\right)^{1/3} T^{4/3}.$$

This means, for example, that the equation for an isotherm (at fixed N) is $pV^{1/3} = \text{const.}$, in contrast to the result for the ideal gas isotherm, pV = const. Note also that p, being intensive, must be expressible as p(T, V/N), which it is.

(b) To obtain $\mu(T, p)$, note that $2N\mu = -pV$, and from our result for p(T, V/N) we have $V/N = T^4/32ap^3$. Thus,

$$\mu(T,p) = -\frac{T^4}{64a \, p^2} \, .$$

(c) The equilibrium adiabatic equation of state for this system is dS = 0. From (a), we see that at fixed N this means $pV^3 = \text{const.}$, so we must have $p_2V_B^3 = p_1V_C^3$ and $p_2V_A^3 = p_1V_D^3$. Hence

$$V_{\mathsf{C}} = V_{\mathsf{B}} \cdot (p_2/p_1)^{1/3}$$
, $V_{\mathsf{D}} = V_{\mathsf{A}} \cdot (p_2/p_1)^{1/3}$.

(a) From part (a), the energy for our system is $E = \frac{1}{2}pV$. Along the upper (p_2) isochore,

$$W_{AB} = \int_{A}^{B} dV \, p_2 = p_2 (V_{B} - V_{A}) \qquad , \qquad \Delta E_{AB} = E_{B} - E_{A} = \frac{1}{2} p_2 \left(V_{B} - V_{A} \right) \quad ,$$

hence

$$Q_{\mathsf{A}\mathsf{B}} = \Delta E_{\mathsf{A}\mathsf{B}} + W_{\mathsf{A}\mathsf{B}} = \frac{3}{2}p_2\left(V_{\mathsf{B}} - V_{\mathsf{A}}\right)$$

The work along the lower (p_1) isochore is

Along the BC adiabat,

$$W_{\mathsf{BC}} = \int_{\mathsf{B}}^{\mathsf{C}} p \, dV = p_2 V_{\mathsf{B}}^3 \int_{V_{\mathsf{B}}}^{V_{\mathsf{C}}} \frac{dV}{V^3} = \frac{1}{2} p_2 V_{\mathsf{B}} \left(1 - \frac{V_{\mathsf{B}}^2}{V_{\mathsf{C}}^2} \right) = \frac{1}{2} p_2 V_{\mathsf{B}} \left[1 - \left(\frac{p_1}{p_2}\right)^{2/3} \right].$$

Similarly,

$$W_{\mathsf{DA}} = \int_{\mathsf{D}}^{\mathsf{A}} p \, dV = p_2 V_{\mathsf{A}}^3 \int_{V_{\mathsf{D}}}^{V_{\mathsf{A}}} \frac{dV}{V^3} = \frac{1}{2} p_2 V_{\mathsf{A}} \left(\frac{V_{\mathsf{A}}^2}{V_{\mathsf{D}}^2} - 1 \right) = \frac{1}{2} p_2 V_{\mathsf{A}} \left[\left(\frac{p_1}{p_2} \right)^{2/3} - 1 \right].$$

Adding up all the individual works, we get

$$\begin{split} W_{\mathrm{cyc}} &= W_{\mathrm{AB}} + W_{\mathrm{BC}} + W_{\mathrm{CD}} + W_{\mathrm{DA}} \\ &= \tfrac{3}{2} p_2 (V_{\mathrm{B}} - V_{\mathrm{A}}) \Biggl[1 - \left(\frac{p_1}{p_2} \right)^{\! 2/3} \Biggr] \,. \end{split}$$

Dividing by $Q_{\mathsf{AB}},$ we obtain the efficiency,

$$\eta = \frac{W_{\rm cyc}}{Q_{\rm AB}} = 1 - \left(\frac{p_1}{p_2}\right)^{\!\!2/3}. \label{eq:gamma}$$

(3) A diatomic gas obeys the equation of state

$$p = \frac{RT}{v-b} - \frac{a}{v^2} + \frac{cRT}{v^3} ,$$

where *a*, *b*, and *c* are constants.

- (a) Find the adiabatic equation of state relating temperature T and molar volume v.
- (b) What is the internal energy per mole, $\varepsilon(T, v)$?
- (c) What is the Helmholtz free energy per mole, f(T, v)?

Solution :

(a) Let ε be the molar internal energy and v the molar volume. We have already shown

$$\left(\frac{\partial\varepsilon}{\partial v}\right)_T = T \left(\frac{\partial p}{\partial T}\right)_v - p \; .$$

Thus, for our system,

$$\left(\frac{\partial\varepsilon}{\partial v}\right)_{T} = \frac{a}{v^{2}} \quad \Rightarrow \quad \varepsilon(T,v) = \frac{5}{2}RT - \frac{a}{v} \;,$$

where the first term is the result for the rarefied limit $v \to \infty$, where the gas presumably becomes ideal. Now if s = S/v is the molar entropy ($v = N/N_A$ is the number of moles), then

$$T \, ds = d\varepsilon + p \, dv = \frac{5}{2} R \, dT + RT \, \frac{dv}{v-b} + cRT \, \frac{dv}{v^3} \, .$$

Dividing by T and then integrating, we have

$$s(T, v) = R \ln \left[T^{5/2}(v-b) e^{-c/2v^2} \right] + \text{const.}$$

Thus, the equation of the adiabat is

$$T^{5/2}(v-b)e^{-c/2v^2} = \text{const.}$$

(b) We have already obtained the result

$$\varepsilon(T,v) = \frac{5}{2}RT - \frac{a}{v}$$
.

(c) From $f = \varepsilon - Ts$, where $f = F/\nu$ is the Helmholtz free energy per mole, we have

$$f(T,v) = \frac{5}{2}RT - \frac{a}{v} - \frac{5}{2}RT \ln\left(\frac{bRT}{a}\right) - RT \ln\left(\frac{v-b}{b}\right) + \frac{cRT}{2v^2} - Ts_0.$$

Here we have inserted constants with the proper dimensions in order to render our expression for f with the appropriate dimensions. Thus, the constant s_0 has dimensions of J/mol · K, the same as the gas constant R. Since c/b^2 is dimensionless, there is more than one way to do this. Any resulting differences will show up in a different expression for s_0 .

(4) Consider the thermodynamics of a solid in equilibrium with a vapor at temperature T and pressure p, but separated by a quasi-liquid layer of thickness d. Let the number density of the liquid be n_{ℓ} . The Gibbs free energy per unit area of the quasi-liquid layer is taken as

$$g_{all}(T,p) = n_{\ell} \,\mu_{\ell}(T,p) \,d + \gamma(d) \,,$$

where $\gamma(d)$ is an effective surface tension which interpolates between $\gamma(0) = \gamma_{sv}$ and $\gamma(\infty) = \gamma_{s\ell} + \gamma_{\ell v}$. The phenomenon of premelting requires $\gamma(0) > \gamma(\infty)$.

(a) Show that
$$\mu_{qll}(T,p) = \mu_{\ell}(T,p) + n_{\ell}^{-1}\gamma'(d) = \mu_s(T,p).$$

- (b) Expand *T* relative to some point $(T_{\rm m}, p)$ along the melting curve to lowest order in $T T_{\rm m}$. Show $\Delta \mu(T, p) \equiv \mu_s(T, p) \mu_\ell(T, p) = \ell_{\rm m}(T T_{\rm m})/T_{\rm m}$, where $\ell_{\rm m}$ is the latent heat of melting.
- (c) Assume

$$\gamma(d) = \gamma_{sv} + (\gamma_{s\ell} + \gamma_{\ell v} - \gamma_{sv}) \cdot \frac{d^2}{d^2 + \sigma^2} ,$$

where σ is a molecular length scale. Assuming $d \gg \sigma$, find the dependence of the thickness *d* of the quasi-liquid layer on the reduced temperature $t \equiv (T_{\rm m} - T)/T_{\rm m}$.

Solution :

(a) The chemical potentials of a particle in the solid and the quasi-liquid layers must be the same. Since we use *d* for thickness, I will here use δ for differential. The Gibbs free energy of the quasi-liquid layer is $G_{qll}(d) = Ag_{qll}(d)$, where *A* is the total surface area. The number of particles in the quasi-liquid layer is $N_{qll} = An_{qll} d$. Thus, the chemical potential is potential is then

$$\mu_{qll} = \frac{\delta G_{qll}}{\delta N_{qll}} = \mu_{\ell} + n_{\ell}^{-1} \gamma'(d) \; .$$

(b) Expanding to first order, with $\Delta \mu = \mu_{\rm s} - \mu_{\ell}$, we have

$$\Delta \mu(T,p) = \left(\frac{\partial \Delta \mu}{\partial T}\right)_p (T - T_{\rm m}) = \frac{\ell_{\rm m}}{T_{\rm m}} (T - T_{\rm m}) \quad ,$$

where $\ell_{\rm m}$ is the latent heat of melting per molecule. This results in the desired expression $\Delta \mu(T,p) = \ell_{\rm m}(T-T_{\rm m})/T_{\rm m}$.

For a more rigorous derivation, expand to first order in both ΔT and Δp :

$$\Delta\mu(T,p) = \left(\frac{\partial\Delta\mu}{\partial T}\right)_p (T - T_{\rm m}) + \left(\frac{\partial\Delta\mu}{\partial p}\right)_T (p - p_{\rm m}) + \dots$$
$$= \frac{\ell_{\rm m}}{T_{\rm m}} (T - T_{\rm m}) - \left(\frac{1}{n_{\ell}} - \frac{1}{n_{\rm s}}\right) (p - p_{\rm m}) + \dots$$

The pressure shift can now be expressed in terms of the temperature shift by examining the slopes of the sublimation and melting lines, via the Clapeyron equation. This results in $\Delta \mu(T,p) = \kappa_v \ell_m (T-T_m)/T_m$, with

$$\kappa_v = 1 - \frac{(dp/dT)_{\text{subl}}}{(dp/dT)_{\text{melt}}} \,.$$

For water, $\kappa_v \approx 1$ and the correction is negligible.

(c) We now set

$$\Delta \mu = \frac{1}{n_{\ell}} \frac{\partial \gamma}{\partial d} = \frac{\gamma_{s\ell} + \gamma_{\ell v} - \gamma_{sv}}{n_{\ell}} \cdot \frac{2\sigma^2 d}{(\sigma^2 + d^2)^2} = \frac{\kappa_v \ell_{\rm m} \, \Delta T}{T_{\rm m}} \,.$$

For $d \gg \sigma$, we have

$$d(t) = \left(-\frac{2\sigma^2(\gamma_{s\ell} + \gamma_{\ell v} - \gamma_{sv})}{\ell_{\rm m} n_{\ell}}\right)^{1/3} t^{-1/3} ,$$

where $t \equiv (T - T_{\rm m})/T_{\rm m}$.