PHYSICS 210A : STATISTICAL PHYSICS HW ASSIGNMENT \#3 SOLUTIONS

(1) Consider an ultrarelativistic ideal gas in three space dimensions. The dispersion is $\varepsilon(\boldsymbol{p})=p c$.
(a) Find T, p, and μ within the microcanonical ensemble (variables S, V, N).
(b) Find F, S, p, and μ within the ordinary canonical ensemble (variables T, V, N).
(c) Find Ω, S, p, and N within the grand canonical ensemble (variables T, V, μ).
(d) Find G, S, V, and μ within the Gibbs ensemble (variables T, p, N).
(e) Find H, T, V, and μ within the $S-p-N$ ensemble. Here $\mathrm{H}=E+p V$ is the enthalpy.

Solution :

(a) The density of states $D(E, V, N)$ is the inverse Laplace transform of the ordinary canonical partition function $Z(\beta, V, N)$. We have

$$
Z(\beta, V, N)=\frac{V^{N}}{N!}\left(\int \frac{d^{3} p}{h^{3}} e^{-\beta p c}\right)^{N}=\frac{V^{N}}{N!} \frac{\beta^{-3 N}}{\pi^{2 N}(\hbar c)^{3 N}}
$$

Thus,

$$
D(E, V, N)=\int_{c-i \infty}^{c+i \infty} \frac{d \beta}{2 \pi i} Z(\beta, V, N) e^{\beta E}=\frac{V^{N}}{N!}\left(\pi^{2 / 3} \hbar c\right)^{-3 N} \frac{E^{3 N-1}}{(3 N-1)!}
$$

Taking the logarithm, and using $\ln (K!)=K \ln K-K+\mathcal{O}(\ln K)$ for large K,

$$
S(E, V, N)=k_{\mathrm{B}} \ln D(E, V, N)=N k_{\mathrm{B}} \ln \left(\frac{V}{N}\right)+3 N k_{\mathrm{B}} \ln \left(\frac{E}{N}\right)-3 N k_{\mathrm{B}} \ln a,
$$

where $a=3 \pi^{2 / 3} e^{-4 / 3} \hbar c$ is a constant. Inverting to find $E(S, V, N)$, we have

$$
E(S, V, N)=\frac{a N^{4 / 3}}{V^{1 / 3}} \exp \left(\frac{S}{3 N k_{\mathrm{B}}}\right) .
$$

From the differential relation

$$
d E=T d S-p d V+\mu d N
$$

we then derive

$$
\begin{aligned}
& T(S, V, N)=+\left(\frac{\partial E}{\partial S}\right)_{V, N}=\frac{a}{3 k_{\mathrm{B}}}\left(\frac{N}{V}\right)^{1 / 3} \exp \left(\frac{S}{3 N k_{\mathrm{B}}}\right) \\
& p(S, V, N)=-\left(\frac{\partial E}{\partial V}\right)_{S, N}=\frac{a}{3}\left(\frac{N}{V}\right)^{4 / 3} \exp \left(\frac{S}{3 N k_{\mathrm{B}}}\right) \\
& \mu(S, V, N)=+\left(\frac{\partial E}{\partial N}\right)_{S, V}=\frac{a}{3}\left(\frac{N}{V}\right)^{1 / 3}\left(4-\frac{S}{N k_{\mathrm{B}}}\right) \exp \left(\frac{S}{3 N k_{\mathrm{B}}}\right) .
\end{aligned}
$$

Note that $p V=N k_{\mathrm{B}} T$.
(b) The Helmholtz free energy is

$$
\begin{aligned}
F(T, V, N) & =-k_{\mathrm{B}} T \ln Z \\
& =3 N k_{\mathrm{B}} T-N k_{\mathrm{B}} T \ln \left(\frac{V}{N}\right)-3 N k_{\mathrm{B}} T \ln \left(3 k_{\mathrm{B}} T\right)+3 N k_{\mathrm{B}} T \ln a,
\end{aligned}
$$

and from

$$
d F=-S d T-p d V+\mu d N
$$

we read off

$$
\begin{aligned}
S(T, V, N) & =-\left(\frac{\partial F}{\partial T}\right)_{V, N}=N k_{\mathrm{B}} \ln \left(\frac{V}{N}\right)+3 N k_{\mathrm{B}} \ln \left(3 k_{\mathrm{B}} T\right)+3 N k_{\mathrm{B}} \ln a \\
p(T, V, N) & =-\left(\frac{\partial F}{\partial V}\right)_{T, N}=\frac{N k_{\mathrm{B}} T}{V} \\
\mu(T, V, N) & =+\left(\frac{\partial F}{\partial N}\right)_{T, V}=-k_{\mathrm{B}} T \ln \left(\frac{V}{N}\right)-3 k_{\mathrm{B}} T \ln \left(3 k_{\mathrm{B}} T\right)+(4+3 \ln a) k_{\mathrm{B}} T .
\end{aligned}
$$

(c) The grand potential is $\Omega=F-\mu N=-k_{\mathrm{B}} T \ln \Xi$, where

$$
\Xi=\sum_{N=0}^{\infty} e^{\beta \mu N} Z(\beta, V, N)=\exp \left\{V e^{\mu / k_{\mathrm{B}} T}\left(\frac{k_{\mathrm{B}} T}{\pi^{2 / 3} \hbar c}\right)^{3}\right\} .
$$

Thus,

$$
\Omega(T, V, N)=-\frac{V}{\pi^{2}} \cdot \frac{\left(k_{\mathrm{B}} T\right)^{4}}{(\hbar c)^{3}} \cdot e^{\mu / k_{\mathrm{B}} T} .
$$

The differential is

$$
d \Omega=-S d T-p d V-N d \mu
$$

and therefore

$$
\begin{aligned}
& S(T, V, \mu)=-\left(\frac{\partial \Omega}{\partial T}\right)_{V, \mu}=\frac{V}{\pi^{2}} \cdot \frac{\left(k_{\mathrm{B}} T\right)^{3}}{(\hbar c)^{3}} \cdot e^{\mu / k_{\mathrm{B}} T} \cdot\left(4 k_{\mathrm{B}}-\frac{\mu}{T}\right) \\
& p(T, V, \mu)=-\left(\frac{\partial \Omega}{\partial V}\right)_{T, \mu}=\frac{\left(k_{\mathrm{B}} T\right)^{4}}{\pi^{2}(\hbar c)^{3}} \cdot e^{\mu / k_{\mathrm{B}} T} \\
& N(T, V, \mu)=-\left(\frac{\partial \Omega}{\partial \mu}\right)_{T, V}=\frac{V}{\pi^{2}} \cdot\left(\frac{k_{\mathrm{B}} T}{\hbar c}\right)^{3} \cdot e^{\mu / k_{\mathrm{B}} T} .
\end{aligned}
$$

Note that $p=-\Omega / V$.
(d) The Gibbs free energy is

$$
\begin{aligned}
G(T, p, N) & =F+p V \\
& =N k_{\mathrm{B}} T \ln p-4 N k_{\mathrm{B}} T \ln \left(k_{\mathrm{B}} T\right)+N k_{\mathrm{B}} T\left(4+3 \ln \left(\frac{1}{3} a\right)\right)
\end{aligned}
$$

The differential of G is

$$
d G=-S d T+V d P+\mu d N
$$

and therefore

$$
\begin{aligned}
S(T, p, N) & =-\left(\frac{\partial G}{\partial T}\right)_{p, N}=-N k_{\mathrm{B}} \ln p+4 N k_{\mathrm{B}} \ln \left(k_{\mathrm{B}} T\right)-N k_{\mathrm{B}} \ln \left(\frac{1}{3} a\right) \\
V(T, p, N) & =+\left(\frac{\partial G}{\partial p}\right)_{T, N}=\frac{N k_{\mathrm{B}} T}{p} \\
\mu(T, p, N) & =+\left(\frac{\partial G}{\partial N}\right)_{T, p}=k_{\mathrm{B}} T \ln p-4 k_{\mathrm{B}} T \ln \left(k_{\mathrm{B}} T\right)+k_{\mathrm{B}} T\left(4+3 \ln \left(\frac{1}{3} a\right)\right) .
\end{aligned}
$$

Note that $\mu=G / N$.
(e) The enthalpy is

$$
\begin{aligned}
\mathrm{H}(S, p, N) & =E+p V \\
& =4 N\left(\frac{1}{3} a\right)^{3 / 4} p^{1 / 4} \exp \left(\frac{S}{4 N k_{\mathrm{B}}}\right) .
\end{aligned}
$$

From

$$
d \mathrm{H}=T d S+V d p+\mu d N
$$

we have

$$
\begin{aligned}
T(S, p, N) & =+\left(\frac{\partial \mathrm{H}}{\partial S}\right)_{p, N}=\frac{\left(\frac{1}{3} a\right)^{3 / 4} p^{1 / 4}}{k_{\mathrm{B}}} \exp \left(\frac{S}{4 N k_{\mathrm{B}}}\right) \\
V(S, p, N) & =+\left(\frac{\partial \mathrm{H}}{\partial p}\right)_{S, N}=N\left(\frac{a}{3 p}\right)^{3 / 4} \exp \left(\frac{S}{4 N k_{\mathrm{B}}}\right) \\
\mu(S, p, N) & =\left(\frac{\partial \mathrm{H}}{\partial N}\right)_{S, p}=\left(\frac{1}{3} a\right)^{3 / 4} p^{1 / 4}\left(4-\frac{S}{N k_{\mathrm{B}}}\right) \exp \left(\frac{S}{4 N k_{\mathrm{B}}}\right) .
\end{aligned}
$$

(2) Consider a system composed of spin tetramers, each of which is described by the Hamiltonian

$$
\hat{H}=-J\left(\sigma_{1} \sigma_{2}+\sigma_{1} \sigma_{3}+\sigma_{1} \sigma_{4}+\sigma_{2} \sigma_{3}+\sigma_{2} \sigma_{4}+\sigma_{3} \sigma_{4}\right)-\mu_{0} H\left(\sigma_{1}+\sigma_{2}+\sigma_{3}+\sigma_{4}\right) .
$$

The individual tetramers are otherwise noninteracting.
(a) Find the single tetramer partition function ζ.
(b) Find the magnetization per tetramer $m=\mu_{0}\left\langle\sigma_{1}+\sigma_{2}+\sigma_{3}+\sigma_{4}\right\rangle$.
(c) Suppose the tetramer number density is n_{t}. The magnetization density is $M=n_{\mathrm{t}} m$. Find the zero field susceptibility $\chi(T)=(\partial M / \partial H)_{H=0}$.

Solution :
(a) Note that we can write

$$
\hat{H}=2 J-\frac{1}{2} J\left(\sigma_{1}+\sigma_{2}+\sigma_{3}+\sigma_{4}\right)^{2}-\mu_{0} H\left(\sigma_{1}+\sigma_{2}+\sigma_{3}+\sigma_{4}\right) .
$$

Thus, for each of the $2^{4}=16$ configurations of the spins of any given tetramer, only the sum $\sum_{i=1}^{4} \sigma_{i}$ is necessary in computing the energy. We list the degeneracies of these states in the table below. Thus, according to the table, we have

$\sigma_{1}+\sigma_{2}+\sigma_{3}+\sigma_{4}$	degeneracy g	energy E
+4	1	$-6 J-4 \mu_{0} H$
+2	4	$-2 \mu_{0} H$
0	6	$-2 J$
-2	4	$+2 \mu_{0} H$
-4	1	$-6 J+4 \mu_{0} H$

$$
\zeta=6 e^{-2 J / k_{\mathrm{B}} T}+8 \cosh \left(\frac{2 \mu_{0} H}{k_{\mathrm{B}} T}\right)+2 e^{6 J / k_{\mathrm{B}} T} \cosh \left(\frac{4 \mu_{0} H}{k_{\mathrm{B}} T}\right) .
$$

(b) The magnetization per tetramer is

$$
m=-\frac{\partial f}{\partial H}=k_{\mathrm{B}} T \frac{\partial \ln \zeta}{\partial H}=4 \mu_{0} \cdot \frac{2 \sinh \left(2 \beta \mu_{0} H\right)+e^{6 \beta J} \sinh \left(4 \beta \mu_{0} H\right)}{3 e^{-2 \beta J}+4 \cosh \left(2 \beta \mu_{0} H\right)+e^{6 \beta J} \cosh \left(4 \beta \mu_{0} H\right)} .
$$

(c) The zero field susceptibility is

$$
\chi(T)=\frac{16 n_{\mathrm{t}} \mu_{0}^{2}}{k_{\mathrm{B}} T} \cdot \frac{1+e^{6 \beta J}}{3 e^{-2 \beta J}+4+e^{6 \beta J}}
$$

Note that for $\beta J \rightarrow \infty$ we have $\chi(T)=\left(4 \mu_{0}\right)^{2} n_{\mathrm{t}} / k_{\mathrm{B}} T$, which is the Curie value for a single Ising spin with moment $4 \mu_{0}$. In this limit, all the individual spins are locked together, and there are only two allowed configurations for each tetramer: $|\uparrow \uparrow \uparrow \uparrow\rangle$ and $|\downarrow \downarrow \downarrow \downarrow\rangle$. When $J=0$, we have $\chi=4 \mu_{0}^{2} n_{\mathrm{t}} / k_{\mathrm{B}} T$, which is to say four times the single spin susceptibility. I.e. all the spins in each tetramer are independent when $J=0$. When $\beta J \rightarrow-\infty$, the only allowed configurations are the six ones with $\sum_{i=1}^{4} \sigma_{i}=0$. In order to exhibit a moment, an energy gap of $2|J|$ must be overcome, hence $\chi \propto \exp (-2 \beta|J|)$, which is exponentially suppressed.
(3) For an ideal gas, find the difference $C_{\varphi}-C_{V}$ for the following functions φ. You are to assume N is fixed in each case.
(a) $\varphi(p, V)=p^{3} V^{2}$
(b) $\varphi(p, T)=p e^{T / T_{0}}$
(c) $\varphi(T, V)=V T^{-1}$

Solution:
In general,

$$
C_{\varphi}=T\left(\frac{\partial S}{\partial T}\right)_{\varphi} .
$$

Note that

$$
đ Q=d E+p d V .
$$

We will also appeal to the ideal gas law, $p V=N k_{\mathrm{B}} T$. Below, we shall abbreviate $\varphi_{V}=\frac{\partial \varphi}{\partial V}$, $\varphi_{T}=\frac{\partial \varphi}{\partial T}$, and $\varphi_{p}=\frac{\partial \varphi}{\partial p}$.
(a) We have

$$
đ Q=\frac{1}{2} f N k_{\mathrm{B}} d T+p d V,
$$

and therefore

$$
C_{\varphi}-C_{V}=p\left(\frac{\partial V}{\partial T}\right)_{\varphi}
$$

Now for a general function $\varphi(p, V)$, we have

$$
\begin{aligned}
d \varphi & =\varphi_{p} d p+\varphi_{V} d V \\
& =\frac{N k_{\mathrm{B}}}{V} \varphi_{p} d T+\left(\varphi_{V}-\frac{p}{V} \varphi_{p}\right) d V
\end{aligned}
$$

after writing $d p=d\left(N k_{\mathrm{B}} T / V\right)$ in terms of $d T$ and $d V$. Setting $d \varphi=0$, we then have

$$
C_{\varphi}-C_{V}=p\left(\frac{\partial V}{\partial T}\right)_{\varphi}=\frac{N k_{\mathrm{B}} p \varphi_{p}}{p \varphi_{p}-V \varphi_{V}} .
$$

This is the general result. For $\varphi(p, V)=p^{3} V^{2}$, we find

$$
C_{\varphi}-C_{V}=3 N k_{\mathrm{B}} .
$$

(b) We have

$$
d Q=\left(\frac{1}{2} f+1\right) N k_{\mathrm{B}} d T-V d p,
$$

and therefore

$$
C_{\varphi}-C_{V}=N k_{\mathrm{B}}-V\left(\frac{\partial p}{\partial T}\right)_{\varphi}
$$

For a general function $\varphi(p, T)$, we have

$$
d \varphi=\varphi_{p} d p+\varphi_{T} d T \quad \Longrightarrow \quad\left(\frac{\partial p}{\partial T}\right)_{\varphi}=-\frac{\varphi_{T}}{\varphi_{p}}
$$

Therefore,

$$
C_{\varphi}-C_{V}=N k_{\mathrm{B}}+V \frac{\varphi_{T}}{\varphi_{p}}
$$

This is the general result. For $\varphi(p, T)=p e^{T / T_{0}}$, we find

$$
C_{\varphi}-C_{V}=N k_{\mathrm{B}}\left(1+\frac{T}{T_{0}}\right) .
$$

(c) We have

$$
C_{\varphi}-C_{V}=p\left(\frac{\partial V}{\partial T}\right)_{\varphi}
$$

as in part (a). For a general function $\varphi(T, V)$, we have

$$
d \varphi=\varphi_{T} d T+\varphi_{V} d V \quad \Longrightarrow \quad\left(\frac{\partial V}{\partial T}\right)_{\varphi}=-\frac{\varphi_{T}}{\varphi_{V}}
$$

and therefore

$$
C_{\varphi}-C_{V}=-p \frac{\varphi_{T}}{\varphi_{V}}
$$

This is the general result. For $\varphi(T, V)=V / T$, we find

$$
C_{\varphi}-C_{V}=N k_{\mathrm{B}} .
$$

(4) Find an expression for the energy density $\varepsilon=E / V$ for a system obeying the Dieterici equation of state,

$$
p(V-N b)=N k_{\mathrm{B}} T e^{-N a / V k_{\mathrm{B}} T},
$$

where a and b are constants. Your expression for $\varepsilon(v, T)$ should involve an integral which can be expressed in terms of the exponential integral,

$$
\mathrm{Ei}(x)=\int_{-\infty}^{x} d t \frac{e^{t}}{t}
$$

Solution :
We have

$$
\left(\frac{\partial E}{\partial V}\right)_{T, N}=T\left(\frac{\partial S}{\partial V}\right)_{T, N}-p=T\left(\frac{\partial p}{\partial T}\right)_{V, N}-p,
$$

where we have invoked a Maxwell relation. For the Dieterici equation of state, then,

$$
\left(\frac{\partial E}{\partial V}\right)_{T, N}=\frac{N k_{\mathrm{B}} T}{V-N b} \cdot \frac{N a}{V k_{\mathrm{B}} T} \cdot e^{-N a / V k_{\mathrm{B}} T}
$$

Let $n=N / V$ be the density and $\varepsilon=E / N$ be the energy per particle. Then the above result is equivalent to

$$
\frac{\partial \varepsilon}{\partial n}=-\frac{a}{1-b n} e^{-n a / k_{\mathrm{B}} T} .
$$

We integrate this between $n=0$ and n, with $b n<1$. Define the dimensionless quantity $\lambda=a / b k_{\mathrm{B}} T$ and $t=\lambda(1-b n)$. Then

$$
\varepsilon(n, T)-\varepsilon(0, T)=-\frac{a e^{-\lambda}}{b} \int_{(1-b n) \lambda}^{\lambda} \frac{d t}{t} e^{t}=\{\operatorname{Ei}((1-b n) \lambda)-\operatorname{Ei}(\lambda)\} \frac{a e^{-\lambda}}{b}
$$

In the zero density limit, the gas must be ideal, in which case $\varepsilon(0, T)=\frac{1}{2} f k_{\mathrm{B}} T$. Thus,

$$
\varepsilon(n, T)=\frac{1}{2} f k_{\mathrm{B}} T-\left\{\operatorname{Ei}\left(\frac{(1-b n) a}{b k_{\mathrm{B}} T}\right)-\operatorname{Ei}\left(\frac{a}{b k_{\mathrm{B}} T}\right)\right\} \cdot \frac{a e^{-a / b k_{\mathrm{B}} T}}{b} .
$$

In terms of the volume per particle, write $v=V / N=1 / n$.

