
PHYSICS 210A : STATISTICAL PHYSICS

HW ASSIGNMENT #3 SOLUTIONS

(1) Consider an ultrarelativistic ideal gas in three space dimensions. The dispersion is
ε(p) = pc.

(a) Find T , p, and µ within the microcanonical ensemble (variables S, V , N ).

(b) Find F , S, p, and µ within the ordinary canonical ensemble (variables T , V , N ).

(c) Find Ω, S, p, and N within the grand canonical ensemble (variables T , V , µ).

(d) Find G, S, V , and µ within the Gibbs ensemble (variables T , p, N ).

(e) Find H, T , V , and µ within the S-p-N ensemble. Here H = E + pV is the enthalpy.

Solution :

(a) The density of states D(E,V,N) is the inverse Laplace transform of the ordinary canon-
ical partition function Z(β, V,N). We have

Z(β, V,N) =
V N

N !

(

∫

d3p

h3
e−βpc

)N

=
V N

N !

β−3N

π2N (~c)3N
.

Thus,

D(E,V,N) =

c+i∞
∫

c−i∞

dβ

2πi
Z(β, V,N) eβE =

V N

N !

(

π2/3
~c
)

−3N E3N−1

(3N − 1)!
.

Taking the logarithm, and using ln(K!) = K lnK −K +O(lnK) for large K ,

S(E,V,N) = k
B
lnD(E,V,N) = Nk

B
ln

(

V

N

)

+ 3Nk
B
ln

(

E

N

)

− 3Nk
B
ln a ,

where a = 3π2/3e−4/3
~c is a constant. Inverting to find E(S, V,N), we have

E(S, V,N) =
aN4/3

V 1/3
exp

(

S

3Nk
B

)

.

From the differential relation

dE = T dS − p dV + µdN

we then derive

T (S, V,N) = +

(

∂E

∂S

)

V,N

=
a

3k
B

(

N

V

)1/3

exp

(

S

3Nk
B

)

p(S, V,N) = −

(

∂E

∂V

)

S,N

=
a

3

(

N

V

)4/3

exp

(

S

3Nk
B

)

µ(S, V,N) = +

(

∂E

∂N

)

S,V

=
a

3

(

N

V

)1/3(

4−
S

Nk
B

)

exp

(

S

3Nk
B

)

.
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Note that pV = Nk
B
T .

(b) The Helmholtz free energy is

F (T, V,N) = −k
B
T lnZ

= 3Nk
B
T −Nk

B
T ln

(

V

N

)

− 3Nk
B
T ln(3k

B
T ) + 3Nk

B
T ln a ,

and from
dF = −S dT − p dV + µdN

we read off

S(T, V,N) = −

(

∂F

∂T

)

V,N

= Nk
B
ln

(

V

N

)

+ 3Nk
B
ln(3k

B
T ) + 3Nk

B
ln a

p(T, V,N) = −

(

∂F

∂V

)

T,N

=
Nk

B
T

V

µ(T, V,N) = +

(

∂F

∂N

)

T,V

= −k
B
T ln

(

V

N

)

− 3k
B
T ln(3k

B
T ) + (4 + 3 ln a) k

B
T .

(c) The grand potential is Ω = F − µN = −k
B
T ln Ξ, where

Ξ =

∞
∑

N=0

eβµNZ(β, V,N) = exp

{

V eµ/kBT

(

k
B
T

π2/3~c

)3
}

.

Thus,

Ω(T, V,N) = −
V

π2
·
(k

B
T )4

(~c)3
· eµ/kBT .

The differential is
dΩ = −S dT − p dV −N dµ ,

and therefore

S(T, V, µ) = −

(

∂Ω

∂T

)

V,µ

=
V

π2
·
(k

B
T )3

(~c)3
· eµ/kBT ·

(

4k
B
−

µ

T

)

p(T, V, µ) = −

(

∂Ω

∂V

)

T,µ

=
(k

B
T )4

π2(~c)3
· eµ/kBT

N(T, V, µ) = −

(

∂Ω

∂µ

)

T,V

=
V

π2
·

(

k
B
T

~c

)3

· eµ/kBT .

Note that p = −Ω/V .

(d) The Gibbs free energy is

G(T, p,N) = F + pV

= Nk
B
T ln p− 4Nk

B
T ln(k

B
T ) +Nk

B
T
(

4 + 3 ln(13a)
)
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The differential of G is
dG = −S dT + V dP + µdN ,

and therefore

S(T, p,N) = −

(

∂G

∂T

)

p,N

= −Nk
B
ln p+ 4Nk

B
ln(k

B
T )−Nk

B
ln(13a)

V (T, p,N) = +

(

∂G

∂p

)

T,N

=
Nk

B
T

p

µ(T, p,N) = +

(

∂G

∂N

)

T,p

= k
B
T ln p− 4k

B
T ln(k

B
T ) + k

B
T
(

4 + 3 ln(13a)
)

.

Note that µ = G/N .

(e) The enthalpy is

H(S, p,N) = E + pV

= 4N
(

1
3a
)3/4

p1/4 exp

(

S

4Nk
B

)

.

From
dH = T dS + V dp+ µdN ,

we have

T (S, p,N) = +

(

∂H

∂S

)

p,N

=

(

1
3a
)3/4

p1/4

k
B

exp

(

S

4Nk
B

)

V (S, p,N) = +

(

∂H

∂p

)

S,N

= N

(

a

3p

)3/4

exp

(

S

4Nk
B

)

µ(S, p,N) =

(

∂H

∂N

)

S,p

=
(

1
3a
)3/4

p1/4
(

4−
S

Nk
B

)

exp

(

S

4Nk
B

)

.

(2) Consider a system composed of spin tetramers, each of which is described by the
Hamiltonian

Ĥ = −J(σ1σ2 + σ1σ3 + σ1σ4 + σ2σ3 + σ2σ4 + σ3σ4)− µ0H(σ1 + σ2 + σ3 + σ4) .

The individual tetramers are otherwise noninteracting.

(a) Find the single tetramer partition function ζ .

(b) Find the magnetization per tetramer m = µ0

〈

σ1 + σ2 + σ3 + σ4
〉

.

(c) Suppose the tetramer number density is nt. The magnetization density is M = ntm.
Find the zero field susceptibility χ(T ) = (∂M/∂H)H=0.
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Solution :

(a) Note that we can write

Ĥ = 2J − 1
2J(σ1 + σ2 + σ3 + σ4)

2 − µ0H (σ1 + σ2 + σ3 + σ4) .

Thus, for each of the 24 = 16 configurations of the spins of any given tetramer, only the
sum

∑4
i=1 σi is necessary in computing the energy. We list the degeneracies of these states

in the table below. Thus, according to the table, we have

σ1 + σ2 + σ3 + σ4 degeneracy g energy E

+4 1 −6J − 4µ0H

+2 4 −2µ0H

0 6 −2J

−2 4 +2µ0H

−4 1 −6J + 4µ0H

ζ = 6 e−2J/k
B
T + 8 cosh

(

2µ0H

k
B
T

)

+ 2 e6J/kBT cosh

(

4µ0H

k
B
T

)

.

(b) The magnetization per tetramer is

m = −
∂f

∂H
= k

B
T

∂ ln ζ

∂H
= 4µ0 ·

2 sinh(2βµ0H) + e6βJ sinh(4βµ0H)

3 e−2βJ + 4 cosh(2βµ0H) + e6βJ cosh(4βµ0H)
.

(c) The zero field susceptibility is

χ(T ) =
16nt µ

2
0

k
B
T

·
1 + e6βJ

3 e−2βJ + 4 + e6βJ

Note that for βJ → ∞ we have χ(T ) = (4µ0)
2nt/kB

T , which is the Curie value for a single
Ising spin with moment 4µ0. In this limit, all the individual spins are locked together, and
there are only two allowed configurations for each tetramer: |↑↑↑↑ 〉 and |↓↓↓↓ 〉. When
J = 0, we have χ = 4µ2

0nt/kB
T , which is to say four times the single spin susceptibility.

I.e. all the spins in each tetramer are independent when J = 0. When βJ → −∞, the only
allowed configurations are the six ones with

∑4
i=1 σi = 0. In order to exhibit a moment,

an energy gap of 2|J | must be overcome, hence χ ∝ exp(−2β|J |), which is exponentially
suppressed.

(3) For an ideal gas, find the difference Cϕ − CV for the following functions ϕ. You are to
assume N is fixed in each case.

(a) ϕ(p, V ) = p3 V 2
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(b) ϕ(p, T ) = p eT/T0

(c) ϕ(T, V ) = V T−1

Solution :

In general,

Cϕ = T

(

∂S

∂T

)

ϕ

.

Note that
d̄Q = dE + p dV .

We will also appeal to the ideal gas law, pV = Nk
B
T . Below, we shall abbreviate ϕV = ∂ϕ

∂V ,

ϕT = ∂ϕ
∂T , and ϕp =

∂ϕ
∂p .

(a) We have
d̄Q = 1

2fNk
B
dT + p dV ,

and therefore

Cϕ − CV = p

(

∂V

∂T

)

ϕ

.

Now for a general function ϕ(p, V ), we have

dϕ = ϕp dp + ϕV dV

=
Nk

B

V
ϕp dT +

(

ϕV −
p

V
ϕp

)

dV ,

after writing dp = d(Nk
B
T/V ) in terms of dT and dV . Setting dϕ = 0, we then have

Cϕ − CV = p

(

∂V

∂T

)

ϕ

=
Nk

B
pϕp

pϕp − V ϕV

.

This is the general result. For ϕ(p, V ) = p3V 2, we find

Cϕ −CV = 3Nk
B
.

(b) We have
d̄Q =

(

1
2f + 1

)

Nk
B
dT − V dp ,

and therefore

Cϕ − CV = Nk
B
− V

(

∂p

∂T

)

ϕ

.

For a general function ϕ(p, T ), we have

dϕ = ϕp dp + ϕT dT =⇒

(

∂p

∂T

)

ϕ

= −
ϕT

ϕp

.
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Therefore,

Cϕ − CV = Nk
B
+ V

ϕT

ϕp

.

This is the general result. For ϕ(p, T ) = p eT/T0 , we find

Cϕ − CV = Nk
B

(

1 +
T

T0

)

.

(c) We have

Cϕ − CV = p

(

∂V

∂T

)

ϕ

,

as in part (a). For a general function ϕ(T, V ), we have

dϕ = ϕT dT + ϕV dV =⇒

(

∂V

∂T

)

ϕ

= −
ϕT

ϕV

,

and therefore

Cϕ − CV = −p
ϕT

ϕV

.

This is the general result. For ϕ(T, V ) = V/T , we find

Cϕ − CV = Nk
B
.

(4) Find an expression for the energy density ε = E/V for a system obeying the Dieterici
equation of state,

p(V −Nb) = Nk
B
T e−Na/V k

B
T ,

where a and b are constants. Your expression for ε(v, T ) should involve an integral which
can be expressed in terms of the exponential integral,

Ei(x) =

x
∫

−∞

dt
et

t
.

Solution :

We have
(

∂E

∂V

)

T,N

= T

(

∂S

∂V

)

T,N

− p = T

(

∂p

∂T

)

V,N

− p ,

where we have invoked a Maxwell relation. For the Dieterici equation of state, then,

(

∂E

∂V

)

T,N

=
Nk

B
T

V −Nb
·

Na

V k
B
T

· e−Na/V k
B
T .
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Let n = N/V be the density and ε = E/N be the energy per particle. Then the above result
is equivalent to

∂ε

∂n
= −

a

1− bn
e−na/k

B
T .

We integrate this between n = 0 and n, with bn < 1. Define the dimensionless quantity
λ = a/bk

B
T and t = λ(1− bn). Then

ε(n, T )− ε(0, T ) = −
a e−λ

b

λ
∫

(1−bn)λ

dt

t
et =

{

Ei
(

(1− bn)λ
)

− Ei(λ)
}a e−λ

b

In the zero density limit, the gas must be ideal, in which case ε(0, T ) = 1
2fkB

T . Thus,

ε(n, T ) = 1
2fkB

T −

{

Ei

(

(1− bn)a

bk
B
T

)

− Ei

(

a

bk
B
T

)

}

·
a e−a/bk

B
T

b
.

In terms of the volume per particle, write v = V/N = 1/n.
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