
PHYSICS 210A : STATISTICAL PHYSICS

HW ASSIGNMENT #1 SOLUTIONS

(1) Compute the information entropy in the Fall 2012 Physics 140A grade distribution. See
http://www-physics.ucsd.edu/students/courses/fall2012/physics140a/index.html.

Solution :

∑

nNn = 49 A+ A A- B+ B B- C+ C C- D F

Nn 2 10 3 8 11 2 7 1 0 4 1

−pn log2 pn 0.188 0.468 0.247 0.427 0.484 0.188 0.401 0.115 0 0.295 0.115

Table 1: F12 Physics 140A final grade distribution.

Assuming the only possible grades are A+, A, A-, B+, B, B-, C+, C, C-, D, F (11 possibilities),
then from the chart we produce the entries in Tab. 1. We then find

S = −
11
∑

n=1

pn log2 pn = 2.93 bits

For maximum information, set pn = 1
11

for all n, whence Smax = log2 11 = 3.46 bits.

(2) Study carefully problem #11 from the worked examples to chapter 1 of the lecture notes.
Suppose I have three bags. Initially, bag #1 contains a quarter, bag #2 contains a dime, and
bag #3 contains two nickels. At each time step, I choose two bags randomly and randomly
exchange one coin from each bag. The time evolution satisfies Pi(t + 1) =

∑

j Yij Pj(t),
where Yij = P (i , t + 1 | j , t) is the conditional probability that the system is in state i at
time t+ 1 given that it was in state j at time t.

(a) How many configurations are there for this system?

(b) Construct the transition matrix Yij and verify that
∑

i Yij = 1.

(c) Find the eigenvalues of Y (you may want to use something like Mathematica).

(d) Find the equilibrium distribution P eq
i .

Solution :

(a) There are seven possible configurations for this system, shown in Table 2 below.
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1 2 3 4 5 6 7

bag 1 Q Q D D N N N

bag 2 D N Q N Q D N

bag 3 NN DN NN QN DN QN DQ

g 1 2 1 2 2 2 2

Table 2: Configurations and their degeneracies for problem 3.

(b) The transition matrix is
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(c) Interrogating Mathematica, I find the eigenvalues are

λ1 = 1 , λ2 = −2
3

, λ3 =
1
3

, λ4 =
1
3

, λ5 = λ6 = λ7 = 0 .

(d) We may decompose Y into its left and right eigenvectors, writing

Y =

7
∑

a=1

λa |R
a 〉〈La |

Yij =

7
∑

a=1

λaR
a
i L

a
j

The full matrix of left (row) eigenvectors is

L =





















1 1 1 1 1 1 1
−2 1 2 −1 −1 1 0
−1 0 −1 0 0 0 1
0 −1 0 1 −1 1 0
1 −1 1 −1 0 0 1
1 0 −1 −1 0 1 0
−1 −1 1 0 1 0 0
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The corresponding matrix of right (column) eigenvectors is

R =
1

24





















2 −3 −6 0 4 1 −5
4 3 0 −6 −4 −1 −7
2 3 −6 0 4 −5 1
4 −3 0 6 −4 −7 −1
4 −3 0 −6 −4 5 11
4 3 0 6 −4 11 5
4 0 12 0 8 −4 −4





















Thus, we have RL = LR = I, i.e. R = L−1, and

Y = RΛL ,

with Λ = diag
(

1 , −2
3
, 1
3
, 1
3
, 0 , 0 , 0

)

.

The right eigenvector corresponding to the λ = 1 eigenvalue is the equilibrium distribu-
tion. We therefore read off the first column of the R matrix:

(P eq)t =
(

1
12

1
6

1
12

1
6

1
6

1
6

1
6

)

.

Note that

P eq
i =

gi
∑

j gj
,

where gj is the degeneracy of state j (see Tab. 2). Why is this so? It is because our random
choices guarantee that Yij gj = Yji gi for each i and j (i.e. no sum on repeated indices). Now
sum this equation on j, and use

∑

j Yji = 1. We obtain
∑

j Yij gj = gi , which says that the
| g 〉 is a right eigenvector of Y with eigenvalue 1. To obtain the equilibrium probability
distribution, we just have to normalize by dividing by

∑

j gj .

(3) A system consists of N ’molecules’. Each molecule consists of four ’spins’: σ, µ1, µ2,
and µ3, where each spin polarization can takes values ±1. The molecular Hamiltonian is

ĥ = Jσ(µ1 + µ2 + µ3)−H
(

3σ − µ1 − µ2 − µ3

)

.

(a) Enumerate all the molecular energy states along with their degeneracies.

(b) Find the molecular partition function ζ(T,H).

(c) Compute the magnetic susceptibility χ(T,H = 0).

Solution :

(a) The states and their degeneracies are listed in Tab. 3 below. Note that there ĥ exhibits
permutation symmetry among the (µ1, µ2, µ3) states.

(b) Accordingly,

ζ(T,H) = 2 e−3βJ + 2 e+3βJ cosh(6βH) + 6 e−βJ cosh(2βH) + 6 e+βJ cosh(4βH) .
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σ (µ1, µ2, µ3) g E

+ (+,+,+) 1 +3J

+ (+,+,−) 3 +J − 2H

+ (+,−,−) 3 −J − 4H

+ (−,−,−) 1 −3J − 6H

− (+,+,+) 1 −3J + 6H

− (+,+,−) 3 −J + 4H

− (+,−,−) 3 +J + 2H

− (−,−,−) 1 +3J

Table 3: States and their degeneracies g.

(c) The molecular magnetization is

m = −
∂f

∂H
=

1

β

∂ ln ζ

∂H

=
6 e3βJ sinh(6βH) + 6 e−βJ sinh(2βH) + 12 eβJ sinh(4βH)

e−3βJ + e3βJ cosh(6βH) + 3 e−βJ cosh(2βH) + 3 eβJ cosh(4βH)

=
18 e3βJ + 6 e−βJ + 24 eβJ

cosh(3βJ) + 3 cosh(βJ)
· βH +O(H3) .

Thus, the zero-field molecular susceptibility is

χ(T,H = 0) =
∂m

∂H
=

18 e3J/kBT + 6 e−J/k
B
T + 24 eJ/kBT

cosh(3J/k
B
T ) + 3 cosh(J/k

B
T )

·
1

k
B
T

.

Note that for J = 0 we obtain χ(T,H = 0) = 12/k
B
T . For a single spin with magnetic

moment p, i.e. ĥ = −pHσ, the susceptibility is p2/k
B
T . Thus for our system, when J = 0

we have one spin (σ) with p = 3 and three (µ1,2,3) with p = 1, hence the total susceptibility

is χ = (32 + 12 + 12 + 12)/k
B
T = 12/k

B
T .

(4) Consider a system of identical but distinguishable particles, each of which has a non-
degenerate ground state with ε0 = 0, and a g−fold degenerate excited state with energy
ε > 0. Study carefully problems #1 and #2 from the worked example problems for chap-
ter 4 of the lecture notes, where this system is treated in the microcanonical and ordinary
canonical ensembles. Here you are invited to work out the results for the grand canonical
ensemble.

(a) Find the grand partition function Ξ(T, z) and the grand potential Ω(T, z). Express
your answers in terms of the temperature T and the fugacity z = eµ/kBT .

(b) Find the entropy S(T, z).

(c) Find the number of particles, N(T, z).
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(d) Show how, in the thermodynamic limit, the entropy agrees with the results from the
microcanonical and ordinary canonical ensembles.

Solution :

(a) There ordinary canonical partition function is clearly

Z(T,N) =
(

1 + ge−ε/k
B
T
)N

,

hence the grand partition function is

Ξ =

∞
∑

N=0

zN Z(T,N) =
1

1− z(1 + g e−ε/kBT )
,

where z = exp(µ/k
B
T ) is the fugacity. The grand potential is

Ω(T, z) = −k
B
T ln Ξ = k

B
T ln

(

1− z(1 + g e−ε/kBT )
)

.

(b) The entropy is S = −
(

∂Ω
∂T

)

µ
, so we must take care to allow z = exp(µ/k

B
T ) to vary. The

result is

S(T, µ) = −k
B
ln
(

1−z(1+g e−ε/kBT )
)

−
µ

T
·

z(1 + g e−ε/kBT )

1− z(1 + g e−ε/kBT )
+

ε

T
·

zg e−ε/kBT

1− z(1 + g e−ε/kBT )
.

(c) The particle number is

N = −

(

∂Ω

∂µ

)

T

= −
z

k
B
T

(

∂Ω

∂z

)

T

=
z(1 + g e−ε/k

B
T )

1− z(1 + g e−ε/kBT )
.

Thus,

z =
1

1 +N−1
·

1

1 + g e−ε/k
B
T
.

(d) Expressing the entropy S(T, z) in terms of T and N , we find

S(T,N) = Nk
B
ln
(

1 + g e−ε/k
B
T
)

+
Nε

T

g e−ε/k
B
T

1 + g e−ε/k
B
T
+ k

B
ln(N + 1) +Nk

B
ln
(

1 +N−1
)

.

The first two terms are extensive, i.e. of order N1. They agree with the results in example
problem 4.2(c). The penultimate term is of order lnN and the last term is of order N0,
hence they are subleading and negligible in the thermodynamic limit.
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