PHYSICS 210A : STATISTICAL PHYSICS
 HW ASSIGNMENT \#6

(1) Consider the one-dimensional Ising model with next-nearest neighbor interactions,

$$
\hat{H}=-J \sum_{n} \sigma_{n} \sigma_{n+1}-K \sum_{n} \sigma_{n} \sigma_{n+2},
$$

on a ring with N sites, where N is even. By considering consecutive pairs of sites, show that the partition function may be written in the form $Z=\operatorname{Tr}\left(R^{N / 2}\right)$, where R is a 4×4 transfer matrix. Find R. Hint: It may be useful to think of the system as a railroad trestle, depicted in Fig. 2, with Hamiltonian

$$
\hat{H}=-\sum_{j}\left[J \sigma_{j} \mu_{j}+J \mu_{j} \sigma_{j+1}+K \sigma_{j} \sigma_{j+1}+K \mu_{j} \mu_{j+1}\right] .
$$

Then $R=R_{\left(\sigma_{j} \mu_{j}\right),\left(\sigma_{j+1} \mu_{j+1}\right)}$, with $(\sigma \mu)$ a composite index which takes one of four possible values $(++),(+-),(-+)$, or $(--)$.

Figure 1: Railroad trestle representation of next-nearest neighbor chain.
(2) For each of the cluster diagrams in Fig. 2, find the symmetry factor s_{γ} and write an expression for the cluster integral b_{γ}.

Figure 2: Cluster diagrams for problem 2.
(3) Compute the partition function for the one-dimensional Tonks gas of hard rods of length a on a ring of circumference L. This is slightly tricky, so here are some hints. Once again, assume a particular ordering so that $x_{1}<x_{2}<\cdots<x_{N}$. Due to translational invariance, we can define the positions of particles $\{2, \ldots, N\}$ relative to that of particle 1, which we initially place at $x_{1}=0$. Then periodicity means that $x_{N} \leq L-a$, and in general one then has

$$
x_{j-1}+a \leq x_{j} \leq L-(N-j+1) a .
$$

Now integrate over $\left\{x_{2}, \ldots, x_{N}\right\}$ subject to these constraints. Finally, one does the x_{1} integral, which is over the entire ring, but which must be corrected to eliminate overcounting from cyclic permutations. How many cyclic permutations are there?

