Consider the analog of the van der Waals equation of state for a gas if diatomic particles with repulsive long-ranged interactions,

\[p = \frac{RT}{v-b} + \frac{a}{v^2}, \]

where \(v \) is the molar volume.

(a) Does this system have a critical point? If not, give your reasons. If so, find \((T_c, p_c, v_c)\).

(b) Find the molar energy \(\varepsilon(T, v) \).

(c) Find the coefficient of volume expansion \(\alpha_p = v^{-1}(\partial v/\partial T)_p \) as a function of \(v \) and \(T \).

(d) Find the adiabatic equation of state in terms of \(v \) and \(T \). If at temperature \(T_1 \) a volume \(v_1 = 3b \) of particles undergoes reversible adiabatic expansion to a volume \(v_2 = 5b \), what is the final temperature \(T_2 \)?

Solution:

(a) Since

\[\left(\frac{\partial p}{\partial v} \right)_T = -\frac{RT}{(v-b)^2} - \frac{2a}{v^3} \]

is negative definite, for any \(T \), there is no critical behavior in this model.

(b) We have

\[\left(\frac{\partial \varepsilon}{\partial v} \right)_T = T \left(\frac{\partial S}{\partial V} \right)_T - p = T \left(\frac{\partial p}{\partial T} \right)_v - p, \]

where we have invoked a Maxwell relation based on \(dF = -SdT - pdV \), we have

\[\left(\frac{\partial \varepsilon}{\partial v} \right)_T = -\frac{a}{v^2}, \]

whence \(\varepsilon(T, v) = \omega(T) + \frac{a}{v} \). In the \(v \to \infty \) limit, we recover the diatomic ideal gas, hence \(\omega(T) = \frac{5}{2}RT \) and

\[\varepsilon(T, v) = \frac{5}{2}RT + \frac{a}{v}. \]

(c) To find \(\alpha_p \), set \(dp = 0 \), where

\[dp = \frac{R}{v-b}dT - \left[\frac{RT}{(v-b)^2} + \frac{2a}{v^3} \right] dv. \]
We then have
\[\alpha_p(T, v) = \frac{1}{v} \left(\frac{\partial v}{\partial T} \right)_p = \frac{R(v-b)v^2}{RTv^3 + 2a(v-b)^2}. \]

Note that we recover the ideal gas value \(\alpha_p = T^{-1} \) in the \(v \to \infty \) limit. We may also evaluate the isothermal compressibility,
\[\kappa_T(T, v) = -\frac{1}{v} \left(\frac{\partial v}{\partial p} \right)_T = \frac{(v-b)^2v^2}{RTv^3 + 2a(v-b)^2}. \]

In the limit \(v \to \infty \), we have \(\kappa_T = v/RT \). Since \(pv = RT \) in this limit, \(\kappa_T(T, v \to \infty) = 1/p \), which is the ideal gas result.

(d) Let \(s = N_{\lambda}S/N \) be the molar entropy. Then
\[
ds = \frac{1}{T} d\varepsilon + \frac{p}{T} dv \]
\[= \frac{1}{2} f R \frac{dT}{T} + \frac{R}{v-b} dv = R d \ln \left[(v-b) T^{f/2} \right], \]
and therefore the adiabatic equation of state is
\[(v-b) T^{f/2} = \text{constant}. \]

Thus, the result of a reversible adiabatic process must be
\[T_2 = \left(\frac{v_1-b}{v_2-b} \right)^{2/f} T_1. \]
For \(v_1 = 3b \) and \(v_2 = 5b \), find \(T_2 = 2^{-2/5} T_1 \).

(2) Consider a two-dimensional gas of ideal nonrelativistic fermions of spin-\(\frac{1}{2} \) and mass \(m \).

(a) Find the relationship between the number density \(n \), the fugacity \(z = \exp(\mu/k_BT) \), and the temperature \(T \). You may choose to abbreviate \(\lambda_T = \sqrt{2\pi \hbar^2/mk_BT} \). Assume the internal degeneracy (e.g., due to spin) is \(g \).

(b) A two-dimensional area \(A \) is initially populated with nonrelativistic fermions of mass \(m \), spin-\(\frac{1}{2} \), and average number density \(n = N/A \) at temperature \(T \). The fermions are noninteracting with the exception that opposite spin fermions can pair up to form spin-0 bosons of mass \(2m \) and binding energy \(\Delta \). In other words, the fermion dispersion is \(\varepsilon_f(k) = \hbar^2 k^2/2m \) and the boson dispersion is \(\varepsilon_B(k) = -\Delta + \hbar^2 k^2/4m \). Assuming the reaction \(f^\uparrow + f^\downarrow \rightleftharpoons B \) has achieved equilibrium, find the relationship between the initial number density \(n \), fugacity \(z \), and temperature \(T \). Hint: The total mass density of the system \(\rho_{\text{tot}} = mn \) is conserved. Use this to first find the relation between the equilibrium densities \(n_f, n_B \), and \(n \).

(c) Assuming the conditions in (b), in the limit \(n \lambda_T^2 \gg 1 \) at fixed \(T \), what are the fermion and boson densities \(n_f \) and \(n_B \), to leading order?
(d) Now suppose the initial particles are spin-0 bosons of mass m, which undergo the reaction $2b \rightleftharpoons B$, where B is a boson of mass $2m$. The initial density is again n. What is the relation between n, T, and z? What are n_b and n_B to leading order when $n\lambda_T^2 \gg 1$?

Solution:

(a) For nonrelativistic fermions of mass m and internal degeneracy g in equilibrium,

$$n = g \int \frac{d^2k}{(2\pi)^2} \frac{1}{z^{-1} \exp(h^2k^2/2mk_B T) + 1} = g\lambda_T^{-2} \int_0^{\infty} \frac{dx}{x^{-1} \exp(x) + 1} = g\lambda_T^{-2} \ln(1 + z) .$$

Thus, $n\lambda_T^2 = g \ln(1 + z)$. The corresponding result for bosons is $n\lambda_T^2 = -g \ln(1 - z)$.

(b) Let z be the fugacity of the fermions and z_B be the fugacity of the bosons. Clearly $\mu_B = 2\mu$, i.e. $z_B = z^2$. Due to the reactions, n_f and n_B are not separately conserved, but $n = n_f + 2n_B$ is conserved, hence

$$n\lambda_T^2 = 2 \ln(1 + z) - 4 \ln \left(1 - z^2 e^{\Delta/k_B T}\right) .$$

Note that $n_B = -2 \ln \left(1 - z^2 e^{\Delta/k_B T}\right)$, with the prefactor of 2 arising from $m_B = 2m$.

(c) When $n\lambda_T^2 \gg 1$, we must have $z^2 e^{\Delta/k_B T} = 1^-$, i.e. $z = e^{-\Delta/2k_B T}$, and therefore, to leading order,

$$n_f = 2 \ln \left(1 + e^{-\Delta/2k_B T}\right) , \quad n_B = \frac{3}{2}n .$$

I.e. almost all the fermions pair up into bound boson states.

(d) If the initial particles are spin-0 bosons, then

$$n\lambda_T^2 = -\ln(1 - z) - 4 \ln \left(1 - z^2 e^{\Delta/k_B T}\right) .$$

When $n\lambda_T^2 \gg 1$, again we have $z = e^{-\Delta/2k_B T}$, and

$$n_b = -\ln \left(1 - e^{-\Delta/2k_B T}\right) , \quad n_B = \frac{1}{2}n .$$

(3) On each site i of a (two-dimensional square) lattice exists a unit vector \hat{n}_i, which can point in any of four directions: $\{\pm \hat{x}, \pm \hat{y}\}$. These vectors interact between neighboring sites. Of the $4^2 = 16$ configurations, two have energy $-J$ and the remaining 14 have energy zero. The nonzero energy configurations for horizontal and for vertical links are shown here:
Consider a variational density matrix approach to this problem, based on the single site density matrix

\[\rho_1(\hat{n}) = \frac{1}{4} (1 + 3x) \delta_{\hat{n}, \hat{x}} + \frac{1}{4} (1 - x) \delta_{\hat{n}, -\hat{x}} + \frac{1}{4} (1 - x) \delta_{\hat{n}, \hat{y}} + \frac{1}{4} (1 - x) \delta_{\hat{n}, -\hat{y}} , \]

where \(x \) is a variational parameter.

(a) What is the allowed range for \(x \)? Verify that the density matrix \(\rho_1 \) is appropriately normalized.

(b) Taking \(\rho_{\text{var}}(\{\hat{n}_i\}) = \prod_i \rho_1(\hat{n}_i) \), find the average energy \(E \). (Please denote the total number of lattice sites by \(N \).)

(c) Find the entropy \(S \).

(d) Find the dimensionless free energy per site \(f \equiv F/NJ \) in terms of the variational parameter \(x \) and the dimensionless temperature \(\theta \equiv k_B T/J \).

(e) Find the Landau expansion of \(f(x, \theta) \) to fourth order in \(x \). Hint:

\[(1 + \varepsilon) \ln(1 + \varepsilon) = \varepsilon + \frac{1}{2} \varepsilon^2 - \frac{1}{6} \varepsilon^3 + \frac{1}{12} \varepsilon^4 - \frac{1}{20} \varepsilon^5 + \ldots . \]

(f) Based on the fourth order Landau expansion of the free energy, sketch the equilibrium curve of \(x \) versus \(\theta \) and identify the location(s) any and all phase transitions, as well as their order(s).

Solution:

(a) The density matrix is non-negative definite, which entails \(x \in \left[-\frac{1}{3}, 1 \right] \). Since the trace is \(\text{Tr} \rho_1 = \sum_{\hat{n}} \rho_1(\hat{n}) = 1 \), it is properly normalized.

(b) The Hamiltonian for this system is written

\[\hat{H} = -J \sum_{\langle ij \rangle \in \mathcal{X}} (\delta_{\hat{n}_i, \hat{x}} \delta_{\hat{n}_j, \hat{x}} + \delta_{\hat{n}_i, -\hat{x}} \delta_{\hat{n}_j, -\hat{x}}) - J \sum_{\langle ij \rangle \in \mathcal{Y}} (\delta_{\hat{n}_i, \hat{y}} \delta_{\hat{n}_j, \hat{y}} + \delta_{\hat{n}_i, -\hat{y}} \delta_{\hat{n}_j, -\hat{y}}) , \]

where \(\mathcal{X} \) is the set of \(\hat{x} \)-directed links and \(\mathcal{Y} \) is the set of \(\hat{y} \)-directed links. We can associate to each site \(i \) the two links to its north (\(\hat{y} \)) and to its east (\(\hat{x} \)). There are then four nonzero
energy configurations to account for, each with energy \(-J\), as depicted in the above figure. From our variational density matrix, three of these configurations occur with probability \(\left[\frac{1}{4}(1-x)\right]^2\), and one with probability \(\left[\frac{1}{4}(1+3x)\right]^2\). Thus, the total energy is

\[
E = \text{Tr} \left(\varrho_{\text{var}} \hat{H} \right) = -3NJ \times \frac{1}{16}(1-x)^2 - NJ \times \frac{1}{16}(1+3x)^2 = -\frac{1}{4}NJ(1+3x^2).
\]

(c) The entropy per spin is given by

\[
s/k_B = -\text{Tr} \varrho \ln \varrho = -3 \times \frac{1}{4}(1-x) \ln \left[\frac{1}{4}(1-x)\right] - \frac{1}{4}(1+3x) \ln \left[\frac{1}{4}(1+3x)\right]
= \frac{3}{4}(1-x) \ln(1-x) + \frac{1}{4}(1+3x) \ln(1+3x) + \ln 4.
\]

The total entropy is \(N = Ns\). Note that in the disordered phase, where \(x = 0\), the entropy per spin is \(s = k_B \ln 4\).

(d) The dimensionless free energy per site \(f = F/NJ\) is then

\[
f(x, \theta) = f_0 - \frac{3}{4}x^2 + \frac{2}{4} \theta(1-x) \ln(1-x) + \frac{1}{4} \theta(1+3x) \ln(1+3x),
\]

with \(f_0 = -\frac{1}{4} - \theta \ln 4\).

(e) Using

\[
(1 + \varepsilon) \ln(1 + \varepsilon) = (1 + \varepsilon)(\varepsilon - \frac{1}{2} \varepsilon^2 + \frac{1}{3} \varepsilon^3 - \frac{1}{4} \varepsilon^4 + \ldots)
= \varepsilon + \frac{1}{2} \varepsilon^2 - \frac{1}{6} \varepsilon^3 + \frac{1}{12} \varepsilon^4 - \frac{1}{24} \varepsilon^5 + \ldots,
\]

we obtain

\[
f(x, \theta) = f_0 + \frac{3}{2} \left(\theta - \frac{1}{2} \right) x^2 - \theta x^3 + \frac{7}{4} \theta x^4 + O(x^5).
\]

Figure 1: \(x(\theta)\) for problem 3.
Writing \(f \equiv f_0 + \frac{1}{2}a x^2 - \frac{1}{2} b y x^3 + \frac{1}{4} b x^4 \), we have \(a = 3\theta - \frac{3}{2}, \) \(y = 3\theta, \) and \(b = 7\theta. \) The first order transition occurs for \(a = 2y^2/9b = \frac{2}{\theta}. \) Thus,
\[
3\theta_c - \frac{3}{2} = \frac{2}{\theta} \theta_c \quad \Rightarrow \quad \theta_c = \frac{21}{38}.
\]
Note that \(\theta_c > \frac{1}{2}, \) i.e. the first order transition preempts what would have been a second order transition at \(\theta = \frac{1}{2} (a = 0). \) The value of \(x(\theta_c) \) is \(x_c = 3a_c/y = \frac{2}{\theta}. \) Please note that this value of \(\theta_c \) pertains only to the truncated fourth order Landau expansion of the free energy. In general, one must find the nontrivial \((i.e. x \neq 0)\) solution of the simultaneous equations \(f(x, \theta) = f_0 \) and \(\partial f/\partial x = 0 \) for the two unknowns \(\theta \) and \(x \) to obtain the critical values \((\theta_c, x_c)\) at the first order transition.

(4) Provide brief but accurate answers to each of the following:

(a) For a single-component system, the Gibbs free energy \(G \) is a function of what state variables? Write its differential and all the Maxwell equations resulting from consideration of the mixed second derivatives of \(G. \)

(b) A system of noninteracting spins is cooled in a uniform magnetic field \(H_1 \) to a temperature \(T_1. \) The external field is then adiabatically lowered to a value \(H_2 < H_1. \) What is the final value of the temperature, \(T_2? \)

(c) For a two-level system with energy eigenvalues \(\varepsilon_1 < \varepsilon_2, \) the heat capacity vanishes in both the \(T \to 0 \) and \(T \to \infty \) limits. Explain physically why this is so. What will happen in the case of a three-level system?

(d) Sketch the phase diagram of the \(d = 2 \) Ising model in the \((T, H)\) plane. Identify the critical point and the location of all first order transitions. Then make a corresponding sketch for the \(d = 1 \) Ising model.

Solution:

(a) The Gibbs free energy \(G = E - TS + pV \) is a double Legendre transformation of the energy \(E. \) Thus \(G = G(T, p, N), \) with
\[
dG = -SdT + Vdp + \mu dN.
\]
We then have the Maxwell relations
\[
\left(\frac{\partial S}{\partial p} \right)_{T, N} = - \left(\frac{\partial V}{\partial T} \right)_{p, N}, \quad \left(\frac{\partial S}{\partial N} \right)_{T, p} = - \left(\frac{\partial \mu}{\partial T} \right)_{p, N}, \quad \left(\frac{\partial V}{\partial N} \right)_{T, p} = \left(\frac{\partial \mu}{\partial p} \right)_{T, N}.
\]

b) For noninteracting spins, the only energy scale in the Hamiltonian is provided by \(H, \) hence the entropy is of the form \(S(T, H, N) = N s(H/T) \) and therefore if \(dS = 0, \) assuming as always \(dN = 0 \) for spins, we have that \(H/T \) is constant. Therefore \(H_1/T_1 = H_2/T_2 \) and
\[
T_2 = T_1 \frac{H_2}{H_1}.
\]
Figure 2: Sketches for problem 4 solutions. (a) Phase diagram of the two-dimensional Ising model. The red line is a line of first order transitions. The black dot is the critical point (T_c, H_c) with $H_c = 0$. (b) Phase diagram for the one-dimensional Ising model. The critical temperature has collapsed to $T_c = 0$. There is a first order transition as a function of H at $H_c = 0$ and fixed temperature $T = 0$.

(c) The occupation probabilities are $P_n = e^{-\beta \varepsilon_n} / (e^{-\beta \varepsilon_1} + e^{-\beta \varepsilon_2})$. At low temperatures, $P_1 \approx 1$ and $P_2 \approx 0$, hence $E = P_1 \varepsilon_1 + P_2 \varepsilon_2 \approx \varepsilon_1$. This pertains so long as $k_B T \ll \varepsilon_2 - \varepsilon_1$, in which case $C = \partial E / \partial T \approx 0$. In the opposite limit $k_B T \gg \varepsilon_2 - \varepsilon_1$, both $P_1 \approx P_2 \approx \frac{1}{2}$, and $E \approx \frac{1}{2}(\varepsilon_1 + \varepsilon_2)$. Again, changing T has very little effect, and $C \approx 0$. The same considerations apply for any system comprised of a finite number of energy levels.

(d) See Fig. 2. In $d = 2$ dimensions, there is a critical point at (T_c, H_c), with $T_c > 0$ and where, by symmetry, $H_c = 0$. For $T < T_c$, there is a line of first order transitions at $H = 0$. In $d = 1$ dimension, the critical temperature collapses to $T_c = 0$.
