Lecture 6/7

Free Particle and Oscillator; Schrodinger eq.

Free Particle

$$
\begin{aligned}
L & =\frac{1}{2} m \dot{x}^{2} \quad \text { Lograugiam } \\
i & \leftrightarrow a \\
f & \leftrightarrow b \\
K(b, a) & =\lim _{\varepsilon \rightarrow 0} \iint \ldots \int d x_{1} \ldots d x_{N-1}\left(\frac{2 \pi i \hbar \varepsilon}{m}\right)^{-\frac{N}{2}} \exp \left[\frac{i m}{2 \hbar \varepsilon} \sum_{i=1}^{N}\left(x_{i}-x_{i-1}\right)^{2}\right]
\end{aligned}
$$

Gaussian integrals $\int e^{-a x^{2}} d x$ or $\int e^{-a x^{2}+b x} d x$
Integral of a gaussian is a gaussian. Integration can te done variable after variable

$$
\begin{gathered}
K(b, a)=\sqrt{\frac{m}{2 \pi i \hbar\left(t_{b}-t_{a}\right)}} \exp \left[\frac{i m\left(x_{b}-x_{a}\right)^{2}}{2 \hbar\left(t_{b}-t_{a}\right)}\right] \\
\text { final result }
\end{gathered}
$$

Calculation is carried out as flows. Notice first

$$
\begin{gathered}
\int_{-\infty}^{+\infty}\left(\frac{m}{2 \pi i \hbar \varepsilon}\right)^{\frac{2}{2}} \exp \left[\frac{i m}{2 \hbar \varepsilon}\left[\left(x_{2}-x_{1}\right)^{2}+\left(x_{1}-x_{0}\right)^{2}\right]\right\} d x_{1} \\
=\sqrt{\frac{m}{2 \pi i \hbar \cdot 2 \varepsilon}} \exp \left[i \frac{m}{2 \hbar(2 \varepsilon)}\left(x_{2}-x_{0}\right)^{2}\right]
\end{gathered}
$$

Next we multiply this result by

$$
x_{0}=x_{a}, t_{0}=t_{0}
$$

$$
\frac{\sqrt{m}}{\sqrt{2 \pi i \hbar \varepsilon}} \exp \left[\frac{i m}{2 \hbar \varepsilon}\left(x_{3}-x_{2}\right)^{2}\right]
$$

$$
x_{w}=x_{b} \quad t_{b}=t_{N}
$$

and integrate now were x_{2} to get:

$$
\left(\frac{m}{2 \pi i \hbar 3 \varepsilon}\right)^{\frac{1}{2}} \exp \left[i \frac{m}{2 \hbar \cdot 3 \varepsilon}\left(x_{3}-x_{0}\right)^{2}\right]
$$

This established a recursion which, after N-1 steps, gives

$$
\left(\frac{m}{2 \pi i \hbar N \cdot \varepsilon}\right)^{\frac{1}{2}} \exp \left[i \frac{m}{2 \hbar N \cdot \varepsilon}\left(x_{N}-x_{0}\right)^{2}\right]
$$

which is identical to the announced result

$$
\int_{-\infty}^{+\infty} e^{-\alpha x^{2}+\beta x} d x=e^{\frac{\beta^{2}}{4 \alpha}}\left(\frac{\pi}{\alpha}\right)^{1 / 2} \quad \text { Gaussian }
$$

even if α ant β are complex $\operatorname{Re} \alpha>0$ quararkes convergence

$$
\begin{aligned}
& a=(0,0) \\
& b=(x, t) \\
& K(x, t ; 0,0)=\left(\frac{m}{2 \pi i \hbar t}\right)^{\frac{1}{2}} e^{\frac{i m x^{2}}{2 \hbar t}}
\end{aligned}
$$

For large x, rapidly oscillating real ant imagining parts (90 rut of phase) when looked at for fixelt.
wove length of oscillation,

$$
\begin{aligned}
& 2 \pi=\frac{m(x+\lambda)^{2}}{2 \hbar t}-\frac{m x^{2}}{2 \hbar t}=\frac{m x \lambda}{\hbar t}+\frac{m \lambda^{2}}{2 \hbar t} \\
& \lambda=\frac{2 \pi \hbar}{m\left(\frac{x}{t}\right)}
\end{aligned}
$$

From classical viewpoint a particle which mares form origin to x in time t has velocity $\frac{x}{t}$ out mormathan $m \frac{x}{t}$.
From QM viewpoint, if motion can be adequately dessited by classical nommeatern $p=m \frac{x}{t}$, then amplitude varies in space with morelength $\lambda=\frac{h}{p}$ (de Boplic)

More generally:

$$
K \sim \exp \left[\frac{i}{\hbar} S_{c l}(6,9)\right]
$$

amplitude of palide L rive at point 6
we mont to show that amplitude roves rapidly in space with wavelength $\lambda=\frac{h}{p}$
if $S_{c l} \gg \hbar$, phase varies rapidly as a function of end pint b
$k=\frac{1}{\hbar} \frac{\partial S_{c l}}{\partial x_{b}} \rightarrow \begin{gathered}\text { change in phase per unit displacement } \\ \text { (wave mounter) }\end{gathered}$

$$
\begin{aligned}
& \hbar=\left.\frac{\partial L}{\partial \dot{x}} \quad \frac{\partial L}{\partial \dot{x}}\right|_{x=x_{b}}=\frac{\partial S_{d}}{\partial x_{b}} \quad k=\frac{2 \pi}{\lambda} \\
& \delta S=\left.\delta x \frac{\partial L}{\partial \dot{x}}\right|_{t_{a}} ^{t_{b}}-\int_{t_{a}}^{t_{b}} \delta x\left[\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)-\frac{\partial L}{\partial x}\right] d t \\
& p=\frac{h}{\lambda} \quad \text { de Brogue muter) }
\end{aligned}
$$

Next, we bob of time degentance of K :

both freapancy and amplitude change

For lange t

$$
2 \pi=\frac{m x^{2}}{2 \hbar t}-\frac{m x^{2}}{2 \hbar(t+T)}=\frac{m x^{2}}{2 \hbar t^{2}}\left(\frac{T}{1+\frac{T}{t}}\right)
$$

T period of oscillation

$$
\begin{aligned}
& \omega=\frac{2 \pi}{T} \\
& \omega \simeq \frac{m}{2 \hbar}\left(\frac{x}{t}\right)^{2} \\
& E_{\text {meng }}=\hbar \omega
\end{aligned}
$$

more gevenally:

$$
\omega=\frac{1}{\hbar} \frac{\partial S_{C l}}{\partial t} \rightarrow \omega=\frac{E}{\hbar}
$$

$$
\begin{aligned}
& E=L-\dot{x} p \\
& L\left(x_{6}\right)-\dot{x}_{b}\left(\frac{\partial L}{\partial \dot{x}}\right)_{x=x_{b}}=\frac{\partial S_{d}}{\partial t_{b}}
\end{aligned}
$$

(1) If the anglituate K varies as $e^{i k x}$, we soy paticle has nomentam $t k$
(2) If uptitude K has a definite frequency $-e^{-i \omega t}$ we soy eneng is $\hbar \omega$

By substitution for free particle:
$-\frac{\hbar}{i} \frac{\partial K(b, a)}{\partial t_{b}}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} K(b, a)}{\partial x_{b}^{2}}$ required to show in nw 2

$$
t_{b}>t_{a}
$$

warefunction:

$$
\psi\left(x^{\prime}, t^{\prime}\right)=\int_{-\infty}^{+\infty} K\left(x^{\prime}, t^{\prime} ; x, t\right) \psi(x, t) d x
$$

Using the equation for K,

$$
-\frac{\hbar}{i} \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}} \quad \text { Schrodinger Eq. }
$$

required to show in hw2

Harmonic Oscillator

$$
\begin{aligned}
L & =\frac{1}{2} m \dot{x}^{2}-\frac{1}{2} m \omega^{2} x^{2} \\
K(6, b) & =\left(\frac{m \omega}{2 \pi i \hbar \sin \omega T}\right)^{\frac{1}{2}} \exp \left\{\frac{i m \omega}{2 \hbar \sin \omega T}\left[\left(x_{a}^{2}+x_{b}^{2}\right) \cos \omega T-2 x_{a} x_{b}\right]\right\} \\
T & =t_{b}-t_{q}
\end{aligned}
$$

the expruent has the form $e^{\frac{i}{\hbar}} S_{\mathrm{cl}}$

$$
S_{c l}=\frac{m \omega}{2 \sin \omega T}\left[\left(x_{a}^{2}+x_{b}^{2}\right) \cos \omega T-2 x_{a} x_{b}\right]
$$

Prof conces from recursive integration

Schröchinger Equation

$$
\begin{aligned}
& \psi(x, t+\varepsilon)=\int_{-\infty}^{+\infty} \frac{1}{A}\left\{\exp \left[\frac{i}{\hbar} \frac{m(x-y)^{2}}{2 \varepsilon}\right]\right\} \times \text { 'Iapidly oseillates for } \\
& \quad \times\left\{\exp \left[-\frac{i}{\hbar} \varepsilon V\left(\frac{x+y}{2}, \varepsilon t\right)\right]\right\} \psi(y, t) d y
\end{aligned}
$$

$y=x+\eta$ substitution, expect lages analitution for suall \geqslant ouly

$$
\psi(x, t+\varepsilon)=\int_{-\infty}^{+\infty} \frac{1}{A} e^{\frac{i m \eta^{2}}{2 \hbar \varepsilon}} e^{-\frac{i \varepsilon}{\hbar} V\left[\frac{x+\eta}{2}, t\right]} \psi(x+\eta, t) d \eta
$$

integnl contibutes in $0 \leq 1 \eta 1 \leq \sqrt{\frac{\hbar \varepsilon}{m}}$ raye

$$
\psi(x, t)+\varepsilon \frac{\partial \psi}{\partial t}=\int_{-\infty}^{+\infty} \frac{1}{A} e^{\frac{i m x^{2}}{2 \hbar \varepsilon}}\left[1-\frac{i \epsilon}{\hbar} V(x, t)\right]
$$

power series

$$
\begin{aligned}
& \frac{1}{A} \int_{-\infty}^{+\infty} e^{\frac{i m \eta^{2}}{2 \hbar \varepsilon}} d \eta=\frac{1}{A}\left(\frac{2 \pi i \hbar \varepsilon}{m}\right)^{\frac{1}{2}} \\
& A=\left(\frac{2 \pi i \hbar \varepsilon}{m}\right)^{\frac{1}{2}} \quad \begin{array}{l}
\text { was chosen } \\
\text { before! }
\end{array} \\
& \int_{-\infty}^{+\infty} \frac{1}{A} e^{\frac{i m \eta^{2}}{2 \hbar \varepsilon}} \cdot \eta d \eta=0 \\
& \int_{-\infty}^{+\infty} \frac{1}{A} e^{\frac{i m \eta^{2}}{2 \hbar \varepsilon}} \cdot \eta^{2} d \eta=\frac{i \hbar \varepsilon}{m} \\
& \text { Therefore } \psi+\varepsilon \frac{\partial \psi}{\partial t}=\psi-\frac{i \varepsilon}{\hbar} V \psi-\frac{\hbar \varepsilon}{2 i m} \frac{\partial^{2} \psi}{\partial x^{2}} \\
& -\frac{\hbar}{i} \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+V(x, t) \psi(x, t) \\
& \text { Schrodinger Eq.! }
\end{aligned}
$$

