Exercises (October 30, 2017):

1. Exercise: try typesetting this
 It does not work with beamer

 > The first entry here
 > Then the second
 > etc

 • The first entry here
 • Then the second
 • etc

 *Hint: Use \textgreater for “>” and \bullet for “•”.

2. Make a triple nested list.

3. How do you get this default:

 > First level
 * Second level
 • Third level

 Check that it works by typesetting the triple ensted list of the previous exercise.

 *Hint: Symbols used: \textgreater, \star, \bullet.

4. Typeset this:

 First The first entry here
 Second Then the second
 Last Then the last

 with the descriptors “First” in red color, “Second” in blue and “Last” in black.

 *Hint: \usepackage{color}
Solutions

Exercise 1: \texttt{\renewcommand{\labelitemi}{\textgreater}}

\begin{itemize}
\item The first entry here
\item Then the second
\item etc
\end{itemize}
\renewcommand{\labelitemi}{\bullet}

\begin{itemize}
\item The first entry here
\item Then the second
\item etc
\end{itemize}

Exercise 2: Here is an example of a tripple nested list:

\begin{itemize}
\item The first entry here
\begin{itemize}
\item The first sub-entry here
\begin{itemize}
\item The first sub-sub-entry here
\item Then the second sub-sub-entry
\end{itemize}
\item etc
\end{itemize}
\item Return to original list, etc
\end{itemize}

Exercise 3: \texttt{\renewcommand{\labelitemi}{\textgreater} \renewcommand{\labelitemii}{\star} \renewcommand{\labelitemiii}{\bullet}}

Exercise 4: Per the hint place \texttt{\usepackage{color}} in the preamble. Then

\begin{description}
\item[\textcolor{red}{First}] The first entry here
\item[\textcolor{blue}{Second}] Then the second
\item[\textcolor{black}{Last}] Then the last
\end{description}
PHYS 87

Exercises (November 13, 2017):

1. Typeset

\[a = b \quad c = d \quad e = f \]
\[g = b \quad h = d \quad k = f \]

2. Typeset

\[a^2 = b^2 + c^2 \]

3. Typeset

\[F = G_N \frac{m_1 m_2}{r^2} \]

4. Typeset

\[n_\pm(E, T) = \frac{1}{e^{\frac{E}{k_B T}} \pm 1} = \frac{1}{e^{\hbar \omega/k_B T} \pm 1} \]

Note: This uses the greek letter \(\omega \) and the symbol \(\hbar \).

5. Typeset

\[F_{\mu\nu} = [D_\mu, D_\nu] = \partial_\mu A_\nu - \partial_\nu A_\mu = \partial_{[\mu} A_{\nu]} \]

Note: This uses the greek letters \(\mu \) and \(\nu \), and the symbol \(\partial \).

6. Typeset these (the first is inline, the next two are separate displayed equations):

“Taylor expansion \(e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n \).”

\[\int_0^1 \frac{df}{dx} \, dx = f(1) - f(0) \]

\[e^{\zeta(s)} = \prod_{n=1}^{\infty} e^{1/n^s} \]

This uses the greek letter zeta.
Exercise 1: \begin{align*}
 a &= b & c &= d & e &= f \\
 g &= b & h &= d & k &= f
\end{align*}

Note: the star in \texttt{align*} is used in order to omit equation numbering.

Exercise 2: \item Typeset

 \[
 a^2 = b^2 + c^2
 \]

Exercise 3: \[
 F = G_N \frac{m_1 m_2}{r^2}
 \]

Exercise 4: \[
 n_{\pm}(E,T) = \frac{1}{e^{\frac{E}{k_BT}} \pm 1} = \frac{1}{e^{\frac{\hbar \omega}{k_BT}} \pm 1}
 \]

Exercise 5: \[
 F_{\mu\nu} = [D_\mu, D_\nu] = \partial_\mu A_\nu - \partial_\nu A_\mu = \partial_{[\mu} A_{\nu]} \]

Exercise 6: `'Taylor expansion $e^x = \sum_{n=0}^{\infty} \frac{n!}{n^x} x^n$.''

\[
 \int_{0}^{1} \frac{df}{dx} dx = f(1) - f(0)
 \]

\[
 e^{\zeta(s)} = \prod_{n=1}^{\infty} e^{1/n^s}
 \]
Exercises (November 20, 2017):

1. Typeset this:
 "Taylor expansion \(e^x = \sum_{n=0}^{\infty} \frac{1}{n!}x^n. \)"

 \[
 \int_{0}^{1} \frac{df}{dx} \, dx = f(1) - f(0)
 \]

 \[
 e^{\zeta(s)} = \prod_{n=1}^{\infty} e^{1/n^s}
 \]

 (This uses the greek letter zeta).

2. Typeset these two expressions as separate \textit{displayed equations}:

 \[
 2 \left[3 \frac{a}{z} + 2 \left(\frac{a}{d} + 7 \right) \right] \\
 x^2 \left(\sum_n A_n + 3 \left(b + \frac{1}{c} \right) \right)
 \]

3. Typeset this, using the \texttt{multline*} environment:

 \[
 2 \left(1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} + \frac{1}{2^7} + \frac{1}{2^8} + \frac{1}{2^9} \right. \\
 + \frac{1}{2^{10}} + \frac{1}{2^{11}} \right) = \frac{4095}{1024}
 \]

4. Make the first entry of Exercise 2 look like this:

 \[
 2 \left[3 \frac{a}{z} + 2 \left(\frac{a}{d} + 7 \right) \right]
 \]
Exercise 1: \[\text{Taylor expansion } e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n. \]
\[\int_0^1 \frac{df}{dx} \, dx = f(1) - f(0) \]
\[e^{\zeta(s)} = \prod_{n=1}^{\infty} e^{1/n^s} \]

Exercise 2:
\[2\left[3\frac{a}{z} + 2\left(\frac{a}{d} + 7 \right) \right] \]
and
\[x^2 \left(\sum_n A_n + 3 \left(b + \frac{1}{c} \right) \right) \]

Exercise 3:
\[
\begin{aligned}
2\left(1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} \\
+ \frac{1}{2^5} + \frac{1}{2^6} + \frac{1}{2^7} \\
+ \frac{1}{2^8} + \frac{1}{2^9}\right) &= \frac{4095}{1024}
\end{aligned}
\]

Exercise 4:
\[2\bigg[3\frac{a}{z} + 2\left(\frac{a}{d} + 7 \right) \bigg] \]