Exercises (October 30, 2017):

1. Exercise: try typesetting this
 It does not work with beamer

 \textgreater The first entry here
 \textgreater Then the second
 \textgreater etc

 • The first entry here
 • Then the second
 • etc

 \textit{Hint:} Use \texttt{\textgreater} for “>” and \\bullet for “•”.

2. Make a triple nested list.

3. How do you get this default:

 \textgreater First level
 \textstar Second level
 \textbullet Third level

 Check that it works by typesetting the triple nested list of the previous exercise.

 \textit{Hint:} Symbols used: \texttt{\textgreater}, \\textstar, \\bullet.

4. Typeset this:

 \textbf{First} The first entry here
 \textbf{Second} Then the second
 \textbf{Last} Then the last

 with the descriptors “First” in red color, “Second” in blue and “Last” in black.

 \textit{Hint:} \texttt{\usepackage{color}}
Solutions

Exercise 1: \renewcommand{\labelitemi}{\textgreater}
\begin{itemize}
 \item The first entry here
 \item Then the second
 \item etc
\end{itemize}
\renewcommand{\labelitemi}{\bullet}
\begin{itemize}
 \item The first entry here
 \item Then the second
 \item etc
\end{itemize}

Exercise 2: Here is an example of a triple nested list:
\begin{itemize}
 \item The first entry here
 \begin{itemize}
 \item The first sub-entry here
 \begin{itemize}
 \item The first sub-sub-entry here
 \item Then the second sub-sub-entry
 \end{itemize}
 \item etc
 \end{itemize}
 \item Return to original list, etc
\end{itemize}

Exercise 3: \renewcommand{\labelitemi}{\textgreater}
\renewcommand{\labelitemii}{\star}
\renewcommand{\labelitemiii}{\bullet}

Exercise 4: Per the hint place \usepackage{color} in the preamble. Then
\begin{description}
 \item[\color{red}First] The first entry here
 \item[\color{blue}Second] Then the second
 \item[\color{black}Last] Then the last
\end{description}
Exercises (November 13, 2017):

1. Typeset

\[a = b \quad c = d \quad e = f \]
\[g = b \quad h = d \quad k = f \]

2. Typeset

\[a^2 = b^2 + c^2 \]

3. Typeset

\[F = G_N \frac{m_1 m_2}{r^2} \]

4. Typeset

\[n_{\pm}(E, T) = \frac{1}{e^{\frac{E}{k_B T}} \pm 1} = \frac{1}{e^{\hbar \omega/k_B T} \pm 1} \]

Note: This uses the greek letter \omega and the symbol \hbar.

5. Typeset

\[F_{\mu\nu} = [D_\mu, D_\nu] = \partial_\mu A_\nu - \partial_\nu A_\mu = \partial_{[\mu} A_{\nu]} \]

Note: This uses the greek letters \mu and \nu, and the symbol \partial.

6. Typeset these (the first is inline, the next two are separate displayed equations):

"Taylor expansion \(e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n.\)"

\[\int_0^1 \frac{df}{dx} \, dx = f(1) - f(0) \]

\[e^{\zeta(s)} = \prod_{n=1}^{\infty} e^{1/n^s} \]

(This uses the greek letter zeta.)
Exercise 1: \begin{align*}
a=&b & c=&d & e=&f \\
g=&b & h=&d & k=&f
\end{align*}
Note: the star in \texttt{align*} is used in order to omit equation numbering.

Exercise 2: \item Typeset
\[
a^2=b^2+c^2
\]
Exercise 3: \[
F = G_N\frac{m_1m_2}{r^2}
\]
Exercise 4: \[
n_{\pm}(E,T)=\frac{1}{e^{\frac{E}{k_BT}}\pm1}
=\frac{1}{e^{\frac{\hbar\omega}{k_BT}}\pm1}
\]
Exercise 5: \[
F_{\mu\nu} = [D_\mu , D_\nu]
=\partial_\mu A_\nu-\partial_\nu A_\mu
=\partial_{[\mu} A_{\nu]}\mu
\]
Exercise 6: ‘‘Taylor expansion $e^{-x}=\sum_{n=0}^\infty \frac{1}{n!}x^n\cdot$’’
\[
\int_{0}^1 \frac{df}{dx}dx= f(1)-f(0)
\]
\[
e^{-\zeta(s)}=\prod_{n=1}^\infty e^{-1/n^s}\]
Exercises (November 20, 2017):

1. Typeset this:
 “Taylor expansion $e^x = \sum_{n=0}^{\infty} \frac{1}{n!}x^n$.”

 \[
 \int_{0}^{1} \frac{df}{dx} \, dx = f(1) - f(0)
 \]

 \[
 e^{\zeta(s)} = \prod_{n=1}^{\infty} e^{1/n^s}
 \]

 (This uses the greek letter zeta).

2. Typeset these two expressions as separate displayed equations:

 \[
 2 \left[\frac{3a}{z} + 2 \left(\frac{a}{d} + 7 \right) \right]
 \]

 \[
 x^2 \left(\sum_{n} A_n + 3 \left(b + \frac{1}{c} \right) \right) \]

3. Typeset this, using the multiline* environment:

 \[
 2 \left(1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} + \frac{1}{2^7} + \frac{1}{2^8} + \frac{1}{2^9} + \frac{1}{2^{10}} + \frac{1}{2^{11}} \right) = \frac{4095}{1024}
 \]

4. Make the first entry of Exercise 2 look like this:

 \[
 2 \left[\frac{3a}{z} + 2 \left(\frac{a}{d} + 7 \right) \right]
 \]
Exercise 1: ‘‘Taylor expansion $e^x=\sum_{n=0}^\infty \frac{1}{n!}x^n$.’’
\[
\int_{0}^{1} \frac{df}{dx} \, dx = f(1) - f(0)
\]
\[
e^{\zeta(s)} = \prod_{n=1}^{\infty} e^{1/n^s}
\]

Exercise 2: \[
2 \left[3 \frac{a}{z} + 2 \left(\frac{a}{d} + 7 \right) \right] \]
and
\[
\left. x^2 \left(\sum_n A_n + 3 \left(b + \frac{1}{c} \right) \right) \right|_0
\]

Exercise 3: \[
\begin{multline*}
2 \left[1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} \\
+ \frac{1}{2^5} + \frac{1}{2^6} + \frac{1}{2^7} \\
+ \frac{1}{2^8} + \frac{1}{2^9} \right] = \frac{4095}{1024}
\end{multline*}
\]

Exercise 4: \[
2 \Bigg[3 \frac{a}{z} + 2 \left(\frac{a}{d} + 7 \right) \Bigg]
\]
Exercises (November 27, 2017):

1. Typeset: The Pauli matrices are:

\[
\sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \text{and} \quad \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\]

Note: The blank in the 2nd entry of the 1st row of \(\sigma^3 \) is a deliberate typo

2. Typset this:

\[
\begin{array}{|c|c|}
\hline
a \times b & c + d \\
\hline
\alpha & \gamma \\
\hline
3 & 1.1 \\
\hline
\end{array}
\]

3. Typeset this:

<table>
<thead>
<tr>
<th>Jersey</th>
<th>First Name</th>
<th>Last Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Cristiano</td>
<td>Ronaldo</td>
</tr>
<tr>
<td>11</td>
<td>Didier</td>
<td>Drogba</td>
</tr>
<tr>
<td>10</td>
<td>Edson</td>
<td>Arantes do Nascimento (Pele)</td>
</tr>
</tbody>
</table>

4. Typeset this:

<table>
<thead>
<tr>
<th>Shape</th>
<th>Area</th>
<th>Perimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk of radius (R)</td>
<td>(\pi R^2)</td>
<td>(2\pi R)</td>
</tr>
<tr>
<td>Rectangle of sides (L_1) \ and (L_2)</td>
<td>(L_1L_2)</td>
<td>(2(L_1 + L_2))</td>
</tr>
<tr>
<td>Square of side (L)</td>
<td>(L_1 = L_2)</td>
<td>(2(L_1 + L_2))</td>
</tr>
<tr>
<td>Right triangle, base (b) \ and height (h)</td>
<td>(\frac{1}{2}bh)</td>
<td>(b + h + \sqrt{b^2 + h^2})</td>
</tr>
</tbody>
</table>

5. Optional exercise: Typeset this (note the alignment at equal sign)

<table>
<thead>
<tr>
<th>(a)</th>
<th>(x^2 + y = 30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>(100 = \sin(\theta) + \cos \varphi)</td>
</tr>
<tr>
<td>(c)</td>
<td>(q \cup p = q \cap p)</td>
</tr>
</tbody>
</table>
Solutions

Exercise 1: The Pauli matrices are:
\[
\sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\]

Exercise 2: \[
\begin{array}{||r|l||}
| a \times b & c + d | \\
\alpha & \gamma \\
\hline
3 & 1.1
\end{array}
\]

Exercise 3: \[
\begin{center}
\begin{tabular}{c||l|l}
Jersey & First Name & Last Name \\
\hline
10 & Cristiano & Ronaldo \\
\hline
11 & Didier & Drogba \\
\hline
10 & Edson & Arantes do Nascimento (Pele)
\end{tabular}
\end{center}
\]

Exercise 4: \[
\begin{center}
\begin{tabular}{|p{2in}|c|c|}
Shape & Area & Perimeter \\
\hline
Disk of radius R & πR^2 & $2\pi R$ \\
\hline
Rectangle of sides L_1 and L_2 & L_1L_2 & $2(L_1+L_2)$ \\
\hline
Square of side $L_1=L_2$ & & \\
\hline
Right triangle, base b and height h & $\frac12bh$ & $b+h+\sqrt{b^2+h^2}$
\end{tabular}
\end{center}
\]

Exercise 5: Solution:
\[
\begin{center}
\begin{tabular}{|l|l@{~$=$~}l|}
\hline
a & x^2+y & 30 \\
\hline
b & 100 & $\sin(\theta)+\cos\varphi$ \\
\hline
c & $q \cup p$ & $q \cap p$
\end{tabular}
\end{center}
\]
1. Experiments:

(a) Paste a lot of text into your document, enough for a couple of pages of typeset material, at least 6 good paragraphs.
(Hint: Find one good paragraph, copy it into the buffer, and paste it many times into your document).
Then insert your *Dream Team Table* between paragraphs 2 and 3. Include a caption with a `\label{dreamteam}` (you provide the text). Insert `\ref{dreamteam}` somewhere in the text before and again after where you inserted the table.
Typeset once with each of positioning b, t and h.

(b) Copy the table and caption and paste into the space between paragraphs 4 and 5. Typeset. Check console (warning on repeated labels).
Change label of second table: `\label{dreamteam2}`. Insert a few `\ref{dreamteam2}` somewhere in the text before and again after where you inserted the table.

2. Resize and crop the triton image to get this:

3. *Experiment* with images just as you did with tables above, and with both tables and figures in the same document. Download additional figures from the web.
Solutions

Exercise 1: Make sure you leave a blank line between paragraphs!

Exercise 2:

\begin{center}
\includegraphics[width=3cm,trim= 7cm 6cm 8cm 1cm,clip]{gl-5-triton.png}+
\end{center}