HW set 1

- 1) sp2 hybridization: give the orbitals as linear combination of atomic orbitals and explain why the coefficients are what they are.
- 2) A single C-C σ bond has carbon-carbon distance 1.47A, a double C=C bond has carbon-carbon distance 1.35 A. Explain how come the measured carbon-carbon distance in benzene is 1.42A for all bonds.
- 3) AM Chpt. 1 problem 2 (Joule heating).
- 4) (a) Assume a metal has 2 types of charge carriers with charges e_1 and e_2 , masses m_1 and m_2 , Drude relaxation times τ_1 and τ_2 and carrier concentration n_1 , n_2 . Deduce an expression for the Hall coefficient R_H . Write your answer in terms of the mobilities $\mu_i = |e_i| \tau_i / m_i$.
- (note that mobilities are by definition positive; e_i may be positive or negative).
- (b) Discuss in which limits it reduces approximately to the form with only one type of charge carrier.
- (c) Find a condition for $R_H=0$.
- (d) In a recent <u>measurement of Hall coefficient as function of pressure in a material</u> it was found that the Hall coefficient decreases in magnitude by a factor of 4 without changing sign as the pressure increases. Propose a different explanation for this observation than the one given in the paper.