Problem 1: AH 4.1
(a) Base centered cubic

YES BL: simple tetragonal

\[\vec{a}_1 = \frac{a}{2} (x + \frac{1}{2}) \]
\[\vec{a}_2 = \frac{a}{2} (x - \frac{1}{2}) \]
\[\vec{a}_3 = a \hat{z} \]

(b) Side-centered cubic

Note a Bravais lattice

BL is simple cubic

Basis:

\[\vec{d}_1 = 0 \]
\[\vec{d}_2 = \frac{a}{2} (x + \frac{1}{2}) \]
\[\vec{d}_3 = \frac{a}{2} (\frac{1}{2} + \frac{1}{2}) \]

(c) Edge-centered cubic

Not a BL

BL is simple cubic

Basis:

\[\vec{d}_1 = 0 \]
\[\vec{d}_2 = \frac{a}{2} \hat{x} \]
\[\vec{d}_3 = \frac{a}{2} \hat{y} \]
\[\vec{d}_4 = \frac{a}{2} \hat{z} \]
Problem 2: ANY.5

(a)
A point \(x \) is equidistant from the vertices of the triangle.

Distance to a vertex \(= d \)

\[
\cos 30^\circ = \frac{a}{2d} = \frac{\sqrt{3}}{2} \implies d = \frac{a}{\sqrt{3}}
\]

The point \(x \) in the direction \(\vec{c}/2 \) from \(x \) and distance \(a \) from the vertices:

\[
\left(\frac{c}{2}\right)^2 + d^2 = a^2 = \frac{c^2}{4} + \frac{a^2}{3} = a^2 \implies \frac{c^2}{4} = \frac{2}{3} a^2 = \sqrt{\frac{8}{3}} a
\]

(b) For hexagonal lattice

\(\vec{a}_1 = a \hat{x} \), \(\vec{a}_2 = \frac{a}{2} \hat{x} + \frac{\sqrt{3}}{2} \hat{y} \), \(\vec{a}_3 = c \hat{z} \)

Volume of unit cell: \(V = (\vec{a}_1 \times \vec{a}_2) \cdot \vec{a}_3 = \frac{\sqrt{3}}{2} a^2 c = \sqrt{2} a^3 \frac{c}{2} \)

There are 2 atoms in unit cell \(N = \frac{2}{\sqrt{2} a^3} \)

For bcc, with spacci \(a' = 4.23 \), has 2 atoms in unit cell \(N = \frac{2}{a'^3} = \frac{2}{4.23^3} \)

\[a = \frac{1}{\sqrt[6]{2}} a' = 3.77 \]
Problem 3: AH 4.6

Let \(d \) be nearest neighbor distance, then radius of sphere \(R = \frac{d}{2} \). Let \(N_e \) be number of atoms in conventional cubic unit cell. The packing fraction \(\rho \)

\[
\rho = \frac{\frac{4}{3} \pi R^3 N_e}{a^3} = \frac{1}{6} \frac{\pi d^3}{a^3} N_e
\]

<table>
<thead>
<tr>
<th>Structure</th>
<th>(d)</th>
<th>(N_e)</th>
<th>(\rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>fcc</td>
<td>(a^{2}/\sqrt{2})</td>
<td>4</td>
<td>(\frac{\pi}{3\sqrt{2}}) = 0.740</td>
</tr>
<tr>
<td>bcc</td>
<td>(\frac{\sqrt{3}}{2} a)</td>
<td>2</td>
<td>(\frac{\sqrt{3}\pi}{8}) = 0.680</td>
</tr>
<tr>
<td>sc</td>
<td>(a)</td>
<td>1</td>
<td>(\frac{\pi}{6}) = 0.524</td>
</tr>
<tr>
<td>diamond</td>
<td>(\frac{\sqrt{3}}{4})</td>
<td>8</td>
<td>(\frac{\sqrt{3}\pi}{16}) = 0.340</td>
</tr>
</tbody>
</table>
Problem 4:
Consider a rotation axis O. We can assume there exists a lattice plane perpendicular to O if \(n \geq 3 \) because: simply find a plane \(\perp O \) that contains a lattice point that is not on the axis, by rotating \(n \) times, we generate \(n \) non-collinear points equal a plane. (\(n \)-fold)

Consider then the \(\perp O \) perpendicular to the paper, and let \(P \) be a point \(P \) that is closer to \(O \) than any other point on the paper.

![Diagram]

Let \(a = \text{distance } OP \). Let \(\xi = 2\pi/n \)

1) By rotating around \(O \) with angle \(\xi \), \(P \) goes into \(P' \), another lattice point.
2) Translate \(O \) by vector \(PP' \) to get point \(O' \). \(O' \) is also an \(n \)-fold rotation axis.
3) Rotate around \(O' \) by angle \(-\xi \) and bring \(P' \) to a point \(P'' \).
4) Use geometry to calculate the distance \(PP'' \). You should find \(PP'' = 2a(1 - \cos \xi) \)
5) Because we assumed \(P \) is closest to \(O \) than any other point, we must have either:
 (i) \(PP'' = a \), \(\Rightarrow \xi = 60^\circ \) or \(n = 6 \) (here, \(P'' = O \))
 (ii) \(PP'' > 2a \), \(\Rightarrow \xi > 60^\circ \), \(n = 4 \) or \(n = 3 \)

Finally, \(n = 2 \) is clearly possible. So the above shows that \(n = 5 \) and \(n > 7 \) not.