PHYS 201 Mathematical Physics, Fall 2017, Midterm

Due date: Tuesday, November 14th, 2017

Rules: Open book and without help from another person.

1. (10 pts) Curvilinear transformations in the complex plane: Consider a curvilinear transformation from the two-dimensional Cartesian coordinates, $(x, y) \rightarrow(u, v) \equiv$ $(u(x, y), v(x, y))$. We may conversely write the inverse transformations $(x, y)=(x(u, v), y(u, v))$. We will assume a transformation such that the contours defined by $u(x, y)=$ constant and $v(x, y)=$ constant intersect at right angles for every x, y, i.e., the local basis vectors \boldsymbol{p} and \boldsymbol{q} in the curvilinear system are orthogonal. Defining $h_{1} \equiv \sqrt{\left(\frac{\partial x}{\partial u}\right)^{2}+\left(\frac{\partial y}{\partial u}\right)^{2}}$ and $h_{2} \equiv \sqrt{\left(\frac{\partial x}{\partial v}\right)^{2}+\left(\frac{\partial y}{\partial v}\right)^{2}}$, the local basis vectors \boldsymbol{p} and \boldsymbol{q} of u and v respectively are given by

$$
\begin{aligned}
\boldsymbol{p} & =\frac{1}{h_{1}} \frac{\partial x}{\partial u} \boldsymbol{i}+\frac{1}{h_{1}} \frac{\partial y}{\partial u} \boldsymbol{j}, \\
\boldsymbol{q} & =\frac{1}{h_{2}} \frac{\partial x}{\partial v} \boldsymbol{i}+\frac{1}{h_{2}} \frac{\partial y}{\partial v} \boldsymbol{j},
\end{aligned}
$$

where \boldsymbol{i} and \boldsymbol{j} are the usual basis vectors in rectangular coordinates. Note that $\boldsymbol{p} \cdot \boldsymbol{p}=$ $\boldsymbol{q} \cdot \boldsymbol{q}=1$ and we have assumed u and v such that $\boldsymbol{p . q}=0$.
i. (1.5 pts) Show that the gradient operator in the curvilinear basis is given by $\tilde{\nabla}=$ $\left(\frac{1}{h_{1}} \frac{\partial}{\partial u}, \frac{1}{h_{2}} \frac{\partial}{\partial v}\right)$. Below we will use the Laplacian in this basis, $\tilde{\Delta}$, which can be derived from the divergence and gradient: (you don't have to show this)

$$
\tilde{\Delta}=\frac{1}{h_{1} h_{2}} \frac{\partial}{\partial u} \frac{h_{2}}{h_{1}} \frac{\partial}{\partial u}+\frac{1}{h_{1} h_{2}} \frac{\partial}{\partial v} \frac{h_{1}}{h_{2}} \frac{\partial}{\partial v} .
$$

(Hint: For the gradient, consider the projection of the usual gradient in rectangular coordinates along the \boldsymbol{p} and \boldsymbol{q} directions).
ii. (1.5 pts) Now, consider a conformal mapping $w=f(z)$ from the complex z-plane to the w-plane, i.e., $z=(x, y) \rightarrow w=(u, v)$. Show that, in this case, $h_{1}=h_{2} \equiv h$ and verify that $\boldsymbol{p . q}=0$. Further, using the form of the Laplacian from (i), show that a solution $\psi(z)$ of Laplace's equation $\Delta \psi=0$ in the z-plane is also a solution of Laplace's equation $\tilde{\Delta} \psi=0$ in the w-plane.
iii. (2 pts) Suppose $\phi(z)$ is a solution of the Helmholtz equation, $\left(\Delta+k^{2}\right) \phi=0$, in the z-plane. Show that a sufficient condition for $\phi(w)$ to be separable solution of the Helmholtz equation in the w-plane, i.e., $\phi(w)=\phi_{1}(u) \phi_{2}(v)$ is that the scale factor h has the form $h^{2}=g_{1}(u)+g_{2}(v)$, where g_{1}, g_{2} are arbitrary functions.
iv. (3 pts) Show that the above separability condition for h is equivalent to the condition $\frac{\partial^{2}}{\partial u \partial v}\left(\left|\frac{d z}{d w}\right|^{2}\right)=0$. Show that

$$
\frac{\partial^{2}}{\partial u \partial v}=i \frac{\partial^{2}}{\partial w^{2}}-i \frac{\partial^{2}}{\partial \bar{w}^{2}},
$$

and considering that $d z / d w$ does not depend on \bar{w} and vice-versa, obtain the separability conditions

$$
\frac{d^{2}}{d w^{2}}\left(\frac{d z}{d w}\right)=\lambda\left(\frac{d z}{d w}\right) ; \quad \frac{d^{2}}{d \bar{w}^{2}}\left(\frac{d \bar{z}}{d \bar{w}}\right)=\lambda\left(\frac{d \bar{z}}{d \bar{w}}\right),
$$

where λ is some constant.
v. (2 pts) Show that transformations of the form $z=\alpha+\beta w$ (which include rotations, changes of scale, and translation) and parabolic transformations $z=\frac{w^{2}}{2}$ satisfy the above equation for $\lambda=0$. Finally, show that $z=e^{w}$ is a polar coordinate transformation (i.e., $u=$ constant corresponds to circles of constant radius and v $=$ constant corresponds to radial lines) and satisfies the separability condition for $\lambda=1$.
2. (4 pts) Consider the Bromwich integral

$$
f(t)=\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{s t} F(s) d s
$$

where $t>0$ and γ is a real number greater than the real part of all the singularities of F i.e., the path of integration is a vertical line to the right of all singularities. Show that $f(t)$ is also equal to the same integral over any other vertical line to the right of all singularities. Here, assume $|F(z)|$ grows slower than any exponential as $|z| \rightarrow \infty$ for z in the half plane where F is analytic.
3. (8 pts) Show that

$$
\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} \frac{\exp \left[-b\left(z^{2}+a^{2}\right)^{1 / 2}+z t\right]}{\left(z^{2}+a^{2}\right)^{1 / 2}} d z=J_{0}\left(a\left(t^{2}-b^{2}\right)^{1 / 2}\right)
$$

where J_{0} is the Bessel function of the first kind with integral representation

$$
J_{0}(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i z \sin \theta} d \theta
$$

Here a, b are real and >0, and t is real with $t>b$. The path of integration is a vertical line to the right of all singularities. One possible method is to replace the integral over the vertical line to an integral around the branch cut joining $i a$ and -ia. Explain why you can do this (you may refer to arguments made in Problem 2). To evaluate the integral around the cut, you would need to first consider b as purely imaginary, and then use analytic continuation to obtain the answer for real b.

