PHYS 201 Mathematical Physics, Fall 2017, Home-
work 7

Due date: Thursday, December 7th, 2017
1. This exercise follows Arfken 10.5.3(a), 10.5.4 to 10.5.7.

i. Show that the Green’s function for the operator
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Due to the pathology at the boundary point, the solution to the inhomogeneous
equation involving £ in terms of the Green’s function has an extra boundary term.

ii. Show Green’s theorem in one dimension for a Sturm-Liouville type operator:
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iii. Using Green’s theorem in the form above, let
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iv. For p(t) =t,y(t) = —t and G(x,t) as in eq. 1, verify that the integrated part does
not vanish.

2. Solve the following initial value problem for ¢ > 0 in terms of Green’s functions:
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3. Compute the inverse Laplace transform of
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i. By expanding in partial fractions, and

ii. From the calculus of residues.



