## PHYS 201 Mathematical Physics, Fall 2017, Homework 7

## Due date: Thursday, December 7th, 2017

1. This exercise follows Arfken 10.5.3(a), 10.5.4 to 10.5.7.
i. Show that the Green's function for the operator

$$
\mathcal{L} y(x)=\frac{d}{d x}\left(x \frac{d y(x)}{d x}\right)
$$

is

$$
G(x, t)= \begin{cases}-\ln t, & 0 \leq x<t  \tag{1}\\ -\ln x, & t<x \leq 1\end{cases}
$$

Due to the pathology at the boundary point, the solution to the inhomogeneous equation involving $\mathcal{L}$ in terms of the Green's function has an extra boundary term.
ii. Show Green's theorem in one dimension for a Sturm-Liouville type operator:

$$
\begin{gathered}
\int_{a}^{b}\left[u(t) \frac{d}{d t}\left(p(t) \frac{d v(t)}{d t}\right)-v(t) \frac{d}{d t}\left(p(t) \frac{d u(t)}{d t}\right)\right] d t \\
\quad=\left.\left[u(t) p(t) \frac{d v(t)}{d t}-v(t) p(t) \frac{d u(t)}{d t}\right]\right|_{a} ^{b}
\end{gathered}
$$

iii. Using Green's theorem in the form above, let

$$
\begin{array}{r}
v(t)=y(t) \quad \text { and } \quad \frac{d}{d t}\left(p(t) \frac{d y(t)}{d t}\right)=-f(t) \\
u(t)=G(x, t) \quad \text { and } \quad \frac{d}{d t}\left(p(t) \frac{\partial G(x, t)}{\partial t}\right)=-\delta(x-t)
\end{array}
$$

and show that it yields

$$
y(x)=\int_{a}^{b} G(x, t) f(t) d t+\left.\left[G(x, t) p(t) \frac{d y(t)}{d t}-y(t) p(t) \frac{\partial}{\partial t} G(x, t)\right]\right|_{t=a} ^{t=b}
$$

iv. For $p(t)=t, y(t)=-t$ and $G(x, t)$ as in eq. 1, verify that the integrated part does not vanish.
2. Solve the following initial value problem for $t>0$ in terms of Green's functions:

$$
\frac{d^{2} y}{d t^{2}}+\alpha \frac{d y}{d t}+\beta y=f(t), \quad y(0)=A, \frac{d y}{d t}(0)=B
$$

3. Compute the inverse Laplace transform of

$$
f(s)=\frac{k^{2}}{s\left(s^{2}+k^{2}\right)}
$$

i. By expanding in partial fractions, and
ii. From the calculus of residues.

