PHYS 201 Mathematical Physics, Fall 2017, Homework 6

Due date: Thursday, November 30th, 2017

The first part of the homework is a review on some exact methods to solve ordinary differential equations. Read Chapter 1 of the book by Bender and Orszag for a more detailed version. For this section, you may turn in only the final answer for each problem; the derivation is not necessary. For the questions on approximate solutions, the full derivation is required.

Terminology: A linear(L) ODE is of the form $L y(x)=f(x)$, where L is a differential operator

$$
L=p_{0}(x)+p_{1}(x) \frac{d}{d x}+\cdots+p_{n-1}(x) \frac{d^{n-1}}{d x^{n-1}}+\frac{d^{n}}{d x^{n}}
$$

If $f \equiv 0$, the differential equation is called homogeneous (H), otherwise it's an inhomogeneous (IH) differential equation. An n-th order homogeneous linear equation ($\mathrm{H}, \mathrm{L}, \mathrm{n}$) has n linearly independent solutions $y_{i}(x), i=1,2, \ldots, n$. The Wronskian $W(x)=W\left[y_{1}(x), y_{2}(x), \ldots, y_{n}(x)\right]$ is used to test the linear independence of the solutions $\left\{y_{i}(x)\right\}$. Here

$$
W(x)=\operatorname{det}\left|\begin{array}{cccc}
y_{1} & y_{2} & \ldots & y_{n} \\
y_{1}^{\prime} & y_{2}^{\prime} & \ldots & y_{n}^{\prime} \\
\vdots & & & \vdots \\
y_{1}^{(n-1)} & y_{2}^{(n-1)} & \ldots & y_{n}^{(n-1)}
\end{array}\right|
$$

If the Wronskian is non-zero except at isolated points, the solution set $\left\{y_{i}(x)\right\}$ is linearly independent. The Wronskian can also be found using Abel's formula, $W(x)=\exp [-$ $\left.\int^{x} p_{n-1}(t) d t\right]$.

1. Constant-coefficient H, L, n ODEs: If p_{i} 's are constants, then substitute $y=e^{r x}$ and solve for the polynomial in r. If the root r is repeated m times, then the solutions are of the form $e^{r x}, x e^{r x}, \ldots x^{m-1} e^{r x}$.
i. Solve $y^{\prime \prime \prime}-4 y^{\prime \prime}+5 y^{\prime}-2 y=0$.
2. Equidimensional-in- x : If the equation is invariant under the transformation $x \rightarrow a x$, substitute $x=e^{t}$ and it turns into a constant-coefficient equation.
3. Exact equations: If a first-order equation can be written as

$$
M[x, y(x)]+N[x, y(x)] y^{\prime}(x)=\frac{d}{d x} f[x, f(x)]=0
$$

then the equation is exact (and the solution is $f=c$). A first-order equation is exact iff

$$
\frac{\partial}{\partial y} M(x, y)=\frac{\partial}{\partial x} N(x, y)
$$

A higher order H, L equation can be converted to a lower order equation if we can observe that $L y=0 \Rightarrow \frac{d}{d x}(M y)=0$ where M is an L differential operator of one less order.
i. Use the integrating factor $e^{x y}$ and verify that the equation $\left(1+x y+y^{2}\right)+(1+x y+$ $\left.x^{2}\right) y^{\prime}(x)=0$ is exact.
ii. Solve $y y^{\prime \prime}+y^{\prime 2}-y y^{\prime} /(1+x)=0$.
4. Reduction of order for L equations: The order of any L equation can be reduced if one of the solution $y_{1}(x)$ is known by substituting $y(x)=u(x) y_{1}(x)$.
i. Solve $y^{\prime \prime}+(x+2) y^{\prime}+(1+x) y=0$.
5. Integrating factor for $I H, L, 1$ equations: All IH,L, 1 equations can be solved using the integrating factor $I(x)=\exp \left[\int^{x} p_{0}(t) d t\right]$. The solution is

$$
y(x)=\frac{c}{I(x)}+\frac{1}{I(x)} \int^{x} f(t) I(t) d t
$$

i. Solve $y^{\prime}+2 y=e^{3 x}$.
6. Variation of Parameters technique for $I H, L, 2$ equations: For every IH,L,2 equation $L y=f$, if $y_{1}(x)$ and $y_{2}(x)$ are the solutions for the H,L,2 equation $L y=0$ and $W(x)=W\left[y_{1}(x), y_{2}(x)\right]$ is the Wronskian, then the solution $y(x)$ is given by

$$
y(x)=-y_{1}(x) \int^{x} \frac{f(t) y_{2}(t)}{W(t)} d t+y_{2}(x) \int^{x} \frac{f(t) y_{1}(t)}{W(t)} d t
$$

This technique can be generalized to higher order IH,L equations.
i. Solve $y^{\prime \prime}+6 y+9=\cosh (x)$.
7. Bernoulli equations: Bernoulli equations are NL,1 equations and have the form

$$
y^{\prime}=a(x) y+b(x) y^{P}
$$

They can be converted to L equations using the substitution $u(x)=y(x)^{1-P}$.
i. Solve $-x y^{\prime}+y=x y^{2}, y(1)=1$.
8. Riccati equations: These are NL, 1 equations of the form

$$
y^{\prime}(x)=a(x) y^{2}(x)+b(x) y(x)+c(x)
$$

They can be solved by guessing one particular solution $y_{1}(x)$ and substituting $y(x)=$ $u(x)+y_{1}(x)$. This converts the Riccati equation to a Bernoulli equation and the general solution can be found thereafter.
i. Solve $x y^{\prime}-2 y+a y^{2}=b x^{4}$.
9. Substitutions: Sometimes a good substitution can convert an NL equation to an equation that is easily solvable.
i. Solve $y^{\prime}=x^{2}+2 x y+y^{2}$.
10. Autonomous NL equations: Autonomous equations are those in which the independent variable (in our case x) does not appear. The order of autonomous equations can be reduced to a lower order equation in y by using $y^{\prime}=u(y), y^{\prime \prime}=\frac{d u}{d x}=u^{\prime}(y) u(y)$ and so on.
i. Reduce the order and solve, if possible, the Blasius equation $y^{\prime \prime \prime}+y y^{\prime \prime}=0$.
11. Scale-invariant NL equations: If the transformations $x \rightarrow a x$ and $y \rightarrow a^{P} y$ leave the equation unchanged, then the equation is scale-invariant. The substitution $y(x)=$ $x^{P} u(x)$ converts a scale-invariant equation to an equidimensional equation in x (which can be turned into an autonomous equation using $x=e^{t}$).
i. Reduce the order and solve, if possible, $x y y^{\prime \prime}=y y^{\prime}+x y^{\prime 2}$.
12. Equidimensional-in-y NL equations: If the equation is unchanged by the transformation $y \rightarrow a y$, then the substitution $y(x)=e^{u(x)}$ reduces the order of the equation by one.
i. Reduce the order by one of $x^{2} y y^{\prime \prime}+x y^{\prime} y^{\prime \prime}+y y^{\prime}=0$.

Approximate solutions to H,L ODEs:

13. Find the Frobenius series expansion about $x=0$ of the solutions of the equation

$$
2 x y^{\prime \prime}-y^{\prime}+x^{2} y=0
$$

14. Find the full asymptotic behavior of the parabolic cylinder functions $D_{\nu}(x)$ as $x \rightarrow \infty$. The parabolic cylinder functions satisfy the differential equation

$$
y^{\prime \prime}+\left(\nu+\frac{1}{2}-\frac{x^{2}}{4}\right) y=0
$$

i. By substituting $y=e^{S(x)}$ in the differential equation and assuming $S^{\prime \prime} \ll\left(S^{\prime}\right)^{2}, x \rightarrow$ ∞, show that the two possible leading behaviors for the solution are

$$
\begin{aligned}
& y(x) \sim c_{1} x^{-\nu-1} e^{x^{2} / 4} \\
& y(x) \sim c_{2} x^{\nu} e^{-x^{2} / 4}
\end{aligned}
$$

$D_{\nu}(x)$ is defined as the second equation with $c_{2}=1$. We have $D_{\nu}(x)=x^{\nu} e^{-x^{2} / 4} w(x)$ where $w(x)=1+\epsilon(x), \epsilon(x) \ll 1$ as $x \rightarrow \infty$.
ii. Find the leading behavior of $\epsilon(x)$ of the form $a_{1} x^{-\alpha}$ by substituting $D_{\nu}(x)$ back in the differential equation and solving the resulting differential equation in ϵ for large x (make appropriate approximations).
iii. Find the full asymptotic solution for $\epsilon(x)$ by substituting $\epsilon(x)=\sum_{n=1}^{\infty} a_{n} x^{-n \alpha}$ and solving the recurrence relation for a_{n}. Show that the series truncates if ν is a nonnegative integer (Observe that the parabolic cylinder equation for nonnegative integer ν is the Schrodinger's equation for the quantum harmonic oscillator. The solutions are known to be of the form $e^{-x^{2} / 4} \mathrm{He}_{\nu}(x)$ i.e., the series solution found above generates the Hermite polynomials).
iv. For $\nu=4.5$, calculate the number of terms in the optimal asymptotic approximation at $x=0.5$ and $x=5$.
15. Analyze the asymptotic behavior of the first Airy function $\operatorname{Ai}(x)$ as $x \rightarrow \infty$. The Airy equation is

$$
y^{\prime \prime}=x y
$$

i. Find the two possible leading behaviors of the solutions using ideas from Exercise 14. $\mathrm{Ai}(x)$ is defined as the solution whose leading behavior is $y(x) \sim$ $\frac{1}{2 \sqrt{\pi}} x^{-1 / 4} e^{-2 x^{3 / 2} / 3}, x \rightarrow \infty$.
ii. Find the full asymptotic behavior i.e., the series solution to $w(x)=1+\epsilon(x)$ (as defined in 14) by directly substituting $w(x)=\sum_{n=0}^{\infty} a_{n} x^{-n \alpha}, \alpha>0, a_{0}=1$ and solving for α and the obtained recurrence relation.
iii. Find the number of terms in the optimal asymptotic approximation for $x=5$.

