PHYS 201 Mathematical Physics, Fall 2017, Final
 Due date: Thursday, December 14th, 2017.

Rules: Open book and without help from another person. Please contact the professor or TA if you have any questions.
1.
a. (5 pts) Show that

$$
\frac{i}{\pi} \int_{-\infty}^{\infty} \frac{e^{-t^{2}}}{x-t} d t=e^{-x^{2}}+\frac{2 i}{\sqrt{\pi}} Z(x), \text { where } \quad Z(x)=e^{-x^{2}} \int_{0}^{x} e^{t^{2}} d t
$$

where $\operatorname{Re} x>0$ and $\operatorname{Im} x \neq 0$. You may use the integral representation

$$
\frac{1}{x-t}=-2 i \int_{0}^{\infty} e^{2 i(x-t) k} d k
$$

b. (5 pts) If α and β are arbitrary complex numbers $(\alpha \neq \beta), t$ is real and >0, and if the path of integration is the vertical line $\operatorname{Re} z=\gamma>0$ to the right of all singularities, express

$$
\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} \frac{(z+\alpha)^{1 / 2} e^{z t}}{z+\beta} d z
$$

in terms of the function Z defined in part (a) and other terms. You may use the result in part (a) even if you do not show it.
2. The integral representation of the Airy function $\operatorname{Ai}(x)$ is given by

$$
\operatorname{Ai}(x)=\frac{1}{2 \pi i} \int_{C} e^{x t-t^{3} / 3} d t
$$

where C is a contour which originates at $\infty e^{-2 \pi i / 3}$ and terminates at $\infty e^{2 \pi i / 3}$ (note that this integral can be related to $I\left(x^{3 / 2}\right)$ in Homework 5, Problem 4 using the substitution $\left.t=i x^{1 / 2} s\right)$. The integral representation of the other Airy function $\operatorname{Bi}(x)$ is given by

$$
\operatorname{Bi}(x)=\frac{1}{2 \pi} \int_{C_{+}} e^{x t-t^{3} / 3} d t+\frac{1}{2 \pi} \int_{C_{-}} e^{x t-t^{3} / 3} d t
$$

where $C_{ \pm}$is a contour which originates at $\infty e^{ \pm 2 \pi i / 3}$ and terminates at $+\infty$.
a. (5 pts) Show that, as $x \rightarrow-\infty$,

$$
\operatorname{Ai}(x)=\frac{1}{\sqrt{\pi}}(-x)^{-1 / 4} \sin \phi(x), \quad \phi(x) \sim \frac{2}{3}(-x)^{3 / 2}+\frac{\pi}{4} .
$$

(Hint: The steepest descent contour connecting $\infty e^{-2 \pi i / 3}$ to $\infty e^{2 \pi i / 3}$ can be deformed into two pieces, one passing through the saddle point at $t=-i \sqrt{-x}$ and one passing through the saddle point at $t=+i \sqrt{-x}$ (why?))
b. (5 pts) Using the method of steepest descents, find the asymptotic behavior of $\operatorname{Bi}(x)$ as $x \rightarrow+\infty$.
c. (5 pts) Find the asymptotic behavior of $\operatorname{Bi}(x)$ as $x \rightarrow-\infty$.
d. (5 pts) Using the above asymptotic relations, derive equation 10.5.4 from BO, i.e., the connection formula for the WKB approximation of the equation $\epsilon^{2} y^{\prime \prime}=Q(x) y$ across a turning point where Q vanishes linearly and has a negative slope.

