Lectures 7: null hypethesis tests |l.



Null hypothesis testing is reductio ad absurdum argument:

® Null hypothesis testing is a reductio ad absurdum argument adapted to statistics: a
hypothesis is shown to be valid by demonstrating the improbability of the consequence
that results from assuming the counter-claim to be true (fair coin).

® The only hypothesis that needs to be specified in this test and which embodies the
counter-claim is referred to as the null hypothesis.

® Aresult is said to be statistically significant if it allows us to reject the null hypothesis. That
IS, as per the reductio ad absurdum reasoning, the statistically significant result should be
highly improbable if the null hypothesis is assumed to be true.

® The rejection of the null hypothesis implies that the correct hypothesis lies in the logical
complement of the null hypothesis. However, unless there is a single alternative to the
null hypothesis, the rejection of null hypothesis does not tell us which of the alternatives
might be the correct one.



Null hypothesis testing:

- A statistical hypothesis refers to a probability distribution that is assumed to govern
the observed data. If X is a random variable representing the observed data and H is
the statistical hypothesis under consideration, then the notion of statistical
significance can be quantified by the conditional probability P( X | H'), which gives
the likelihood of the observation if the hypothesis is assumed to be correct.

- The p-values should not be confused with probability on hypothesis (as is done in
Bayesian Hypothesis Testing) such as P( H I X) , the probability of the hypothesis
given the data, or P( H ), the probability of the hypothesis being true, or P( X)), the
probability of observing the given data.


https://en.wikipedia.org/wiki/Conditional_probability

Null hypothesis testing:

The p-value is defined as the probability, under the assumption of hypothesis H, of
obtaining a result equal to or more extreme than what was actually observed.
Depending on how it is looked at, the "more extreme than what was actually observed"
can mean

{ X = x } (right-tail event) or

{ X = x } (left-tail event) or the "smaller" of

{X=x}and{ X =x} (double-tailed event).

Thus, the p-value is given by
- P(X=x1H) for right tail event,
« P( X =x1H) for left tail event,
« 2min{P(X=xI1H),P(X=xI|H) }for double tail event.

The smaller the p-value, the larger the significance because it tells the investigator that
the hypothesis under consideration may not adequately explain the observation. The
hypothesis H is rejected if any of these probabilities is less than or equal to a small,
fixed but arbitrarily pre-defined threshold value a, which is referred to as the level of
significance.

Unlike the p-value, the a level is not derived from any observational data and does not
depend on the underlying hypothesis; the value of a is instead determined by the
consensus of the research community that the investigator is working in.



Null hypothesis testing:

Important:

Pr (observation | hypothesis) # Pr (hypothesis | observation)
The probability of observing a result given that some hypothesis
is true is not equivalent to the probability that a hypothesis is true

given that some result has been observed.

Using the p-value as a “score” is committing an egregious logical error:
the transposed conditional fallacy.
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A p-value (shaded green area) is the probability of an observed
(or more extreme) result assuming that the null hypothesis is true.



Null hypothesis testing:

e Computing a p-value requires a null hypothesis, a test statistic (together with deciding
whether the researcher is performing a one-tailed test or a two-tailed test), and data.
Even though computing the test statistic on given data may be easy, computing the
sampling distribution under the null hypothesis, and then computing its cumulative
distribution function (CDF) is often a difficult computation. Today, this computation is
done using statistical software and computational power.

® \When the null hypothesis is true, the probability distribution of the p-value is uniform on
the interval [0,1]. By contrast, if the alternative hypothesis is true, the distribution is
dependent on sample size and the true value of the parameter being studied.
The distribution of p-values for a group of studies is called a p-curve. The curve is
affected by four factors: the probability that a study is examining a true hypothesis
rather than a false hypothesis, the power of the studies investigating true hypotheses,
the Type 1 error rates, and publication bias. A p-curve can be used to assess the
reliability of scientific literature, such as by detecting publication bias or p-hacking.



Coin flipping null hypothesis testing:

As an example of a statistical test, an experiment is performed to determine whether a coin flip is fair (equal chance
of landing heads or tails) or unfairly biased (one outcome being more likely than the other).

Suppose that the experimental results show the coin turning up heads 14 times out of 20 total flips. The null
hypothesis is that the coin is fair, and the test statistic is the number of heads. If a right-tailed test is considered, the
p-value of this result is the chance of a fair coin landing on heads at least 14 times out of 20 flips. That probability

can be computed from binomial coefficients as
Prob(14 heads) + Prob(15 heads) + - - - + Prob(20 heads)

1 [/20 20 20 60,460
~ 50 [(14) M (15) o (20)] = T048,576 008
This probability is the p-value, considering only extreme results that favor heads. This is called a one-tailed test.
However, the deviation can be in either direction, favoring either heads or tails. The two-tailed p-value, which
considers deviations favoring either heads or tails, may instead be calculated. As the binomial distribution is

symmetrical for a fair coin, the two-sided p-value is simply twice the above calculated single-sided p-value: the two-
sided p-value is 0.116. In the above example:

null hypothesis (Ho) p(head) = 0.5

- Test statistic: number of heads
Level of significance: 0.05
Observation O: 14 heads out of 20 flips; and

- Two-tailed p-value of observation O given Ho = 2*min(Prob(no. of heads = 14 heads), Prob(no. of heads
< 14 heads))= 2*min(0.058, 0.978) = 2*0.058 = 0.116.

Note that the Prob(no. of heads < 14 heads) = 1 - Prob(no. of heads = 14 heads) + Prob(no. of head = 14) =1 -
0.058 + 0.036 = 0.978; however, symmetry of the binomial distribution makes that an unnecessary computation to
find the smaller of the two probabilities. Here, the calculated p-value exceeds 0.05, so the observation is consistent
with the null hypothesis, as it falls within the range of what would happen 95% of the time were the coin is in fact fair.
Hence, the null hypothesis at the 5% level is not rejected. Although the coin did not fall evenly, the deviation from
expected outcome is small enough to be consistent with chance.

However, had one more head been obtained, the resulting p-value (two-tailed) would have been 0.0414 (4.14%).
The null hypothesis is rejected when a 5% cut-off is used.



Null hypothesis testing summary:

“null hypothesis”
“the statistic” (e.g., t-value or y?)

— calculable for the null hypothesis

— intuitively should be “deviation from” in some way
“the critical region” a

— biologists use 0.05

— physicists use 0.0026 (3 o)
one-sided or two?

— somewhat subjective

— use one-sided only when the other side has an understood and innocuous interpretation

:f theI data is in the critical region, the null hypothesis is ruled out at the a significance
eve
after seeing the data you

— may adjust the significance level a

— may not try a different statistic, because any statistic can rule out at the a level in 1/a tries
(“data dredging” for a significant result!)

if you decided in advance to try N tests, then the critical region for a significance is
o/N (Bonferroni correction).

Phys. Rev. Lett. discovery threshold:
5 6 (0.000057 percent)




frequentist view of null hypothesis (DNA example):

Count nucleotides A,C,G, T on SacCer Chr4:

Take the file SacSerChr4.txt (on
course web site).

Count the letters A,C,G,T.
You should get:

A = 476750
C = 289341

G = 291352 : _
T = 474471 Are these counts consistent with the model

pA=pC=pC=pT=0.25?

(Of course not! But we'll check.)

Are they consistent with the model
pa=pr~031 pc=pz~0197

That’s a deeper question! You might think yes,
because of A-T and C-G base pairing.




frequentist view of null hypothesis (DNA example):

As always, the starting point is to write down a model. Bayesian: What is
the probability of hypothesis. Frequentist: What is the probability of a test
statistic for a null hypothesis.

A possible model is multinomial: At each position an i.i.d. choice of A,C,G,T,
with respective probabilities adding up to 1.

Almost equivalent (and simpler for now) is 4 separate binomial models: At
each position an i.i.d. choice of A vs. not A with some probability p,.
Then do separately for pg, pg, P+-

The counts are all so large that the normal approximation is highly

accurate:
Bin(n, p) ~ Normal(np, /np(1 — p))

Why? CLT applies to binomial because it's sum of Bernoullir.v.’s: N
tries of an r.v. with values 1 (prob p) or O (prob 1-p).

p=px1+(1—-p)x0=p

2 = px (1= P+ (=) X 0 =1 -1



frequentist view of null hypothesis (DNA example):

Let’s dispose of the silly (all p’s = 0.25):

The test statistic: the value of the observed count under the null hypothesis
that it is binomially (or equivalent normally) distributed with p=0.25.

pw=0.25N

O = \/0-25 X 0.7 N / t-value = number of standard deviations /

p_ NPT H / p-value = tail probability (here, 2-tailed)

o BEERI SR
P = 2[1 — Pxormal(|t])] .
t-value p-value
A 174965 | =0 The null hypothesis is (totally,
infinitely, beyond any possibility

C —174.715 1 ~0 of redemption!) ruled out.
G —-170.963 | ~0
T 170.713 | =0




frequentist view of null hypothesis (DNA example):

The not-silly model: A and T occur with identical probabilities, as do C and G.

The test statistic: Difference between A and T (or C and G) counts under
the null hypothesis that they have the same p, which we will estimate in the
obvious way (which is actually an MLE).

(na+nt)/N
(’nc T ng)/N

DAT =

N N

oG =

na ~ Normal(Npar, /Npar(l — par))

ny ~ Normal(Npar, /Npar(1l — par))
= n4 — np ~ Normal(0, \/ZNﬁAT(l — PaT))

_— N\

the difference of two Normals is the variance of the sum (or
itself Normal difference) is the sum of the
variances




frequentist view of null hypothesis (DNA example):

In MATLAB the calculation now looks like this:

dif = [count(l)-count(3); count(2)-count(4) ] A =476750
pdiff = [pnuc(l); pnuc(2)] C = 289341
mu = [0; O]; G =291352
sig = sqrt(2 .* pdiff .* (1 - pdiff) .* Ten) T =474471
tval (dif - mu) ./ sig

pval = 2*(1-normcdf(abs(tval),0,1))
dif = 2-tailed
:%ﬁ Why? Because, we're discovering genes!
- _ I
pdi fioc. }097 - — - - + strand
0.1889 D
muy = s —— - strand
0
0 The fluctuating “units” are indeed not single bases.
sig = Rather, they are genes which, individually, do not
809.3402 have (or prefer) A=T, C=G. Their placement on
685.1154 one strand or the other is random.
tval = ~
-2.8159 :
> 9353 Surprise! |
pval = > The model is ruled out
g- gg;g with high significance
] (small p-value)!




Null hypothesis testing (Bayesian):

Here are three Bayesian criticisms of tail tests:

(1) Their result depends on the choice of test or (more argumentatively) what was
in the mind of the experimenter

These are called “stopping rule paradoxes”. &4
Hypothesis H,: a coin is fair with P(heads)=0.5
Data: in 10 flips, the first 9 are heads, then 1 tail.

Analysis Method |. Data this extreme, or more so, should
occur under H, only

9 heads or more 1+10+10+1 — 0.0214

210

(you lose: referee wants p<0.01 and tells you to get more data)



Null hypothesis testing (Bayesian):
Analysis method II.

“I forgot to tell you,” says the experimenter, “‘my protocol was
to flip until a tail and record N (=9), the number of heads.”

UnderH, p(N)=2-""+1)
p(>N) =2+ 41414 ...y=2N
P(>9) =272 = 0.00195

(Nature hold the presses!)

Stopping rule effects are a serious methodological issue in biomedical
research, where for ethical reasons stopping criteria may depend on
outcomes in complicated and unpredictable ways, or be ad hoc after
the experiment starts (and rightly so — see next slide!)



Null hypothesis testing (Bayesian):

What would be a Bayesian approach?
H, is the hypothesis that prob = p.
P(H,) is its probability.

P(H,|data) < P(data|H,)P(H,) x p°(1 — p)
p’(1 - p)
Jo p°(1 — p)dp

P(H,|data) =

The curve is the answer.
45 , ' - x We might, however, summarize it in
various ways:

35}

Likelihood (or posterior probability) ratio:

P(Hps|data)  0.1074
P(Hyax|data) — 4.2616

25F

= 0.0252
15} Bayes tail probability:
0.5
P(H,|data)dp = 0.0059

D5F

0



Null hypothesis testing (Bayesian):

For an example in which we might use a more
sophisticated prior, suppose the data is 10 heads in a row.

“Hmm. When people make me watch them flip coins, 95% of the
time it’s a (nearly) fair coin [A], 4% of the time it’s a double-headed
[B] or double-tailed coin [C], and 1% of the time something else

weird is happening [D].”
Case A: 0.95 x (0.5)10 =0.00093  0.043
Case B 0.02 x 119 = 0.02 0.915
Case C  0.02x 019 =0 0.000

Case D 0.01 x [ p'%dp = 0.00091 0.042

This kind of analysis is not usually publishable, unless you can justify your
choice of prior on the basis of already published data. (In such a case it is
dignified by the term “meta-analysis”.) However, it is a good way to live
your life, especially if you are a person who likes to make bets!



Null hypothesis testing (Bayesian):

(Can you remember that we were listing three Bayesian
criticisms of tail tests?)

(2) Not suitable for comparing hypotheses quantitatively.
Best you can do is rule one out, leaving the other viable.
Ratio of p-values is not anything meaningful!

you should go learn about Likelihood Ratio tests, but | personally think
that Bayes odds ratio is easier to compute and easier to interpret

(3) The sanctification of certain p-values (e.g., the magic
p=0.05 value) is naive and misleading.

(on the one hand) 1 in 20 results are wrong! Imagine
if we built nuclear power plants to this low a standard.

(on the other hand) the large majority of results with p=0.10
are in fact correct. These could sometimes be acted on.






