Lectures 6: null hypethesis tests |.



frequentist view of null hypothesis:

The idea of p-value (tail) tests is to see how extreme is the
observed data relative to the distribution of hypothetical repeats of
the experiment under some “null hypothesis™ H,.

If the observed data is too extreme, the null hypothesis is
disproved. (It can never be proved.)

The idea is to pick a null hypothesis that is uninteresting, so that if you
rule it out you have discovered something interesting.

If the null hypothesis is true, then p-values are uniformly distributed in
(0,1), in principle exactly so.

There are some fishy aspects of tail tests, which we
discuss later, but they have one big advantage over
Bayesian methods: You don’t have to enumerate all the

alternative hypotheses (“the unknown unknowns”).



frequentist view of null hypothesis:

Don’t confuse p-values with t-values (also sometimes named “Student”)

t-value = number of standard deviations from the mean

Intentionally drawn
unsymmetric, not
just sloppy drawing!
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It's much easier to compute a score (“statistic”) that depends only on the mean and
standard deviation of the expected distribution. But, in general, this is interpretable as
“likely” or “unlikely” only relative to a Gaussian (which may or may not be relevant).
Often we are in an asymptotic regime where distributions are close to Gaussian. But
beware of t-values if not!

The reason that t-values often are relevant is, of course, the Central Limit Theorem,
as we have seen.



frequentist view of null hypothesis:

For practice with p- and t-values, let’s look at the Sac cer genome.

We'll use as a data set all of Chromosome 4.
Yeast and Human are very close relatives in the great scheme of things.

Saccharomyces cerevisiae

= baker’s yeast
goal is to build probability models for

chromosome 4 from four nucleobases
ACGT and subject them to null hypothesis

Chromosome 4:
ACACCACACC (1531894 omitted) TAGCTTTTGG
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molecular biology on one slide:
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frequentist view of null hypothesis (DNA example):

Count nucleotides A,C,G, T on SacCer Chr4:

Take the file SacSerChr4.txt (on
course web site).

Count the letters A,C,G,T.
You should get:

A = 476750
C = 289341

G = 291352 : _
T = 474471 Are these counts consistent with the model

pA=pC=pC=pT=0.25?

(Of course not! But we'll check.)

Are they consistent with the model
pa=pr~031 pc=pz~0197

That’s a deeper question! You might think yes,
because of A-T and C-G base pairing.




frequentist view of null hypothesis (DNA example):

As always, the starting point is to write down a model. Bayesian: What is
the probability of the data. Frequentist: What is the probability of a test
statistic for a null hypothesis.

A possible model is multinomial: At each position an i.i.d. choice of A,C,G,T,
with respective probabilities adding up to 1.

Almost equivalent (and simpler for now) is 4 separate binomial models: At
each position an i.i.d. choice of A vs. not A with some probability p,.
Then do separately for pg, pg, P+-

The counts are all so large that the normal approximation is highly

accurate:
Bin(n, p) ~ Normal(np, /np(1 — p))

Why? CLT applies to binomial because it's sum of Bernoullir.v.’s: N
tries of an r.v. with values 1 (prob p) or O (prob 1-p).

p=px1+(1—-p)x0=p

2 = px (1= P+ (=) X 0 =1 -1



frequentist view of null hypothesis (DNA example):

Let’s dispose of the silly (all p’s = 0.25):

The test statistic: the value of the observed count under the null hypothesis
that it is binomially (or equivalent normally) distributed with p=0.25.

pw=0.25N

O = \/0-25 X 0.7 N / t-value = number of standard deviations /

p_ NPT H / p-value = tail probability (here, 2-tailed)

o BEERI SR
P = 2[1 — Pxormal(|t])] .
t-value p-value
A 174965 | =0 The null hypothesis is (totally,
infinitely, beyond any possibility

C —174.715 1 ~0 of redemption!) ruled out.
G —-170.963 | ~0
T 170.713 | =0




frequentist view of null hypothesis (DNA example):

The not-silly model: A and T occur with identical probabilities, as do C and G.

The test statistic: Difference between A and T (or C and G) counts under
the null hypothesis that they have the same p, which we will estimate in the
obvious way (which is actually an MLE).

(na+nt)/N
(’nc T ng)/N

DAT =

N N

oG =

na ~ Normal(Npar, /Npar(l — par))

ny ~ Normal(Npar, /Npar(1l — par))
= n4 — np ~ Normal(0, \/ZNﬁAT(l — PaT))

_— N\

the difference of two Normals is the variance of the sum (or
itself Normal difference) is the sum of the
variances




frequentist view of null hypothesis (DNA example):

In MATLAB the calculation now looks like this:

dif = [count(l)-count(3); count(2)-count(4) ] A =476750
pdiff = [pnuc(l); pnuc(2)] C = 289341
mu = [0; O]; G =291352
sig = sqrt(2 .* pdiff .* (1 - pdiff) .* Ten) T =474471
tval (dif - mu) ./ sig

pval = 2*(1-normcdf(abs(tval),0,1))
dif = 2-tailed
:%ﬁ Why? Because, we're discovering genes!
- _ I
pdi fioc. }097 - — - - + strand
0.1889 D
muy = s —— - strand
0
0 The fluctuating “units” are indeed not single bases.
sig = Rather, they are genes which, individually, do not
809.3402 have (or prefer) A=T, C=G. Their placement on
685.1154 one strand or the other is random.
tval = ~
-2.8159 :
> 9353 Surprise! |
pval = > The model is ruled out
g- gg;g with high significance
] (small p-value)!







