Lectures 10: Maximum likelihood llI.
(nonlinear least square fits)

X2 fitting procedure!



from Lecture 9:

An example might be something like fitting a known functional form to data
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from Lecture 9: Maximum Likelihood discussion

Fitting is usually presented in frequentist, MLE language.
But one can equally well think of it as Bayesian:

P(bl{yi}) o< P({y:}b) P(b)

SiIcE (yi—y<xib>)2' P(b)

g;

x exp %Z(y"_y(x"b))z P(b)
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x exp[~ 1x*(b)] P(b)

Now the idea is: Find (somehow!) the parameter value b, that
minimizes 2.

For linear models, you can solve linear “normal equations” or, better,
use Singular Value Decomposition. See NR3 section 15.4

In the general nonlinear case, you have a general minimization problem,
for which there are various algorithms, none perfect.

Those parameters are the MLE. (So it is Bayes with uniform prior.)



from Lecture 9: Maximum Likelihood discussion

Nonlinear fits are often easy in MATLAB (or other high-level languages) if you
can make a reasonable starting guess for the parameters:

T — by)?
y(z|b) = by exp(—bax) + b3 exp (_%( - 4) )
5

o=y (st

)

ymodel = @(x,b) b(1)*exp(-b(2)*x)+b(3)*exp(-(1/2)*((x-b(4))/b(5)) .A2)
chisqfun = @(b) sum(((ymodel(x,b)-y) /<ia) A2}

1.2

bguess = [1 2 .5 3 1.5]

bfit = fminsearch(chisqfun,bguess)
xfit = (0:0.01:8); o8}
yfit = ymodel (xfit,bfit);
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¥2 distribution

Let’s talk more about chi-square.
Recall that a t-value is (by definition) a deviate from N(0, 1)

v2 is a “statistic” defined as the sum of the squares of n independent t-values.
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Chisquare(rv) is a distribution (special case of Gamma), defined as

x>~ Chisquare(v), D> 0
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The important theorem is that ¢ 2 is in fact distributed as Chisquare.

Let’s prove it.



I' function 1-pager

In mathematics, the gamma function (represented by

the capital Greek letter I') is an extension of the
factorial function, with its argument shifted down by 1,

to real and complex numbers. That is, if 7 is a positive
integer:

I'(n) =(n—1).

The gamma function is defined for all complex numbers
except the non-positive integers. For complex numbers
with a positive real part, it is defined via a convergent
improper integral:

I'(2) = /000 z” e ® da. I' (%) = /7




y2 distribution

Prove first the case of v=1:

Suppose px(x)zme = z~N(0,1)

and Y = T2
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¥2 distribution

To prove the general case for integer v, compute the characteristic function

Xz ~ Chisquare(v), v > 0

1 1
p(P)dy* = — ()2 texp(=1x%)dy®.  x*>0
22"T'(3v)

characteristic function by Fourier transformation:

V2
(1-21*t) | |
\ Since we already proved that v=1 is the
distribution of a single t2-value, this proves that

the general v case is the sum of v t?-values.



x2 distribution Maximum Likelihood parameter errors?

Fitting is usually presented in frequentist, MLE language.
But one can equally well think of it as Bayesian:

P(bl{yi}) o< P({y:}b) P(b)

SiIcE (yi—y<xib>)2' P(b)

0;

i yi —y(xilb) )’
X exp |—3 Z — P(b)

x exp|—11* (b)] P(b)

Now the idea is: Find (somehow!) the parameter value b, that
minimizes 2.

For linear models, you can solve linear “normal equations” or, better,
use Singular Value Decomposition. See NR3 section 15.4

In the general nonlinear case, you have a general minimization problem,
for which there are various algorithms, none perfect.

Those parameters are the MLE. (So it is Bayes with uniform prior.)



x2 distribution Maximum Likelihood parameter errors?

How accurately are the fitted parameters determined?
As Bayesians, we would instead say, what is their posterior distribution?

Taylor series:

1.2 1.2 1 T |1 82X2
— 32X (b) ~ ~ 2 Xmin §(b — bo) {Z’?bc’?b] (b —by)

So, while exploring the y2 surface to find its minimum, we must also
calculate the Hessian (2nd derivative) matrix at the minimum.

Then
P(b[{yi}) o< exp [—%(b — bo)ngl(b — bo)] P(b)
with I

522 } -1~ covariance (or “standard error”) matrix

3, = |2 of the fitted parameters
’ [Qabab

Notice that if (i) the Taylor series converges rapidly and (ii) the

prior is uniform, then the posterior distribution of the b’s is
multivariate Normal



x2 distribution Maximum Likelihood parameter errors?

Numerical calculation of the Hessian by finite difference

0°f 1 (f++—f—+ B f+——f——)
dzdy ~ 2h 2h 2h

= o (Fae + foe = fm = )

bfit = 1.1235 1.5210 0.6582 3.2654

chisqfun = @(b) sum(((ymodel(x,b)-y)./sig).A2)
h = 0.1;

unit = @(1) (1:5) == 1;

hess zeros(5,5);

for i=1:5, for j=1:5

bpp = bfit + h*(unit(i)+unit(3));
bmm = bfit + h*(-unit(i)-unit(j));
bpm = bfit + h*(unit(i)-unit(3));
bmp = bfit + h*(-unit(i)+unit(3));

hess(i,j) = (chisgfun(bpp)+chisqfun(bmm)..
-chisqgfun(bpm)-chisgfun(bmp))./(2*h)A2;
end
end
covar = inv(0.5*hess)

o— 4 ®0+ ® ++
h
h
*=0 %00 *>o0 *
® _ _ ‘0_ .+_

1.4832

This also works for the diagonal
components. Can you see how?



distribution Maximum Likelihood parameter errors?

(z — 54)2)

For our example,  Y(z|b) = b1 exp(—baz) + b3 exp (_% b2

5

bfit =
1.1235 1.5210 0.6582 3.2654 1.4832

hess =
64.3290 -38.3070 47.9973 -29.0683 46.0495
-38.3070 31.8759 -67.3453 29.7140 -40.5978
47 .9973 -67.3453 723.8271 -47.5666 154.9772
-29.0683 29.7140 -47.5666 68.6956 -18.0945
46.0495 -40.5978 154.9772 -18.0945 89.2739

covar =
0.1349 0.2224 0.0068 -0.0309 0.0135
0.2224 0.6918 0.0052 -0.1598 0.1585
0.0068 0.0052 0.0049 0.0016 -0.0094
-0.0309 -0.1598 0.0016 0.0746 -0.0444
0.0135 0.1585 -0.0094 -0.0444 0.0948

This is the covariance structure of all the parameters, and indeed (at least in
CLT normal approximation) gives their entire joint distribution!

The standard errors on each parameter separately are 0; — Cz-z-

sigs =
0.3672 0.8317 0.0700 0.2731 0.3079

But why is this, and what about two or more parameters at a
time (e.g. by and b;)?



x2 distribution Maximum Likelihood marginalized parameters

We can Marginalize or Condition uninteresting parameters. (Different things!)

P(b‘{yi}) X exp [—%(b — bo)ngl(b - bo)] P(b)

Marginalize: (this is usual) Ignore (integrate over) uninteresting parameters.

2%
2 0bdb

Special case of one variable at a time: Just take diagonal components in 3],

—1
In 3, = [ ] submatrix of interesting rows and columns is new >3,

Covariances are pairwise expectations and don’t depend on whether other
parameters are “interesting” or not.

Condition: (this is rare!) Fix uninteresting parameters at specified values.

%
2 9bdb

In 33 1 — [ ] submatrix of interesting rows and columns is new Zb—l

Take matrix inverse if you want their covariance >,
(If you fix parameters at other than b,, the mean also shifts — exercise for reader!)



x2 distribution Maximum Likelihood marginalized parameters

For our example, we are conditioning or marginalizing from 5 to 2 dims:

T — by)?
y(xlb) = b]_ exp(—bz.’c) + b3 exp (_% ( b2 4) )
5

the uncertainties on b, and b, jointly (as error ellipses) are
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Conditioned errors are always smaller, but are useful only if you can find other
ways to measure (accurately) the parameters that you want to condition on.



generic idea of covariance matrix

The covariance matrix is a more general idea than just for multivariate Normal.
You can compute the covariances of any set of random variables.
It's the generalizaton to M-dimensions of the (centered) second moment Var.

Cov (z,y) = ((z — 7)(y — ¥))

For multiple r.v.’s, all the possible covariances form a (symmetric) matrix:
C = Ci; = Cov (zi,z;) = (zi —Ti)(z; —T;))

Notice that the diagonal elements are the variances of the individual variables.

The variance of any linear combination of r.v.’s is a quadratic form in C :

Var (z o;L;) = <Z o H (e ) a;(x; — 5’3_1)>

2
— ol'Ca

This also shows that C is positive definite, so it can still be visualized as an ellipsoid in
the space of the r.v.’s., where the directions are the different linear combinations.



generic idea of covariance matrix

The covariance matrix is closely related to the linear correlation matrix.

Cis 2. (xi =X)(yi =)
Tij = ’ more often seen ;= i
\/ CiiCjj written out as \/Z(.r,- — X)2 \/Z(-"f — )2

When the null hypothesis is that X and Y are independent r.v.’s, thenris
useful as a p-value statistic (“test for correlation™), because

1. For large numbers of data points N, it is normally distributed,
r ~ N(0, N~1/2)

so rv/ NN is a normal t-value
2. Even with small numbers of data points, if the underlying

distribution is multivariate normal, there is a simple form for the p-
value (comes from a Student t distribution).




correlated data - first glimpse

Question: What is the generalization of

2
L; — s
x2=z( “) i~ N(us,03)

, 0;
i

to the case where the x,'s are normal, but not independent?
l.e., x comes from a multivariate Normal distribution?

(2m)M/2 (1iet(2)1/2 exp[—5(x — ) E7 (x — )]

N(x|p, %) =

The mean and covariance of r.v.’s from this distribution are*

p=(x) I=(x-p)x-p")

} . I In the one-dimensional case o is the standard deviation,

which can be visualized as “error bars” around the mean.

In more than one dimension X can be visualized as
an error ellipsoid around the mean in a similar way.

1=x-—p)!'S 7 (x—p)




correlated data - first glimpse

Multivariate Normal Distributions

Generalizes Normal (Gaussian) to M-dimensions

Like 1-d Gaussian, completely defined by its mean and (co-)variance
Mean is a M-vector, covariance is a M x M matrix

NGl ) = (5 vs7m gorsy L3~ )75 e~ )

The mean and covariance of r.v.’s from this distribution are*
p=(x) T=((x-p)x-p’")

I o I In the one-dimensional case o is the standard deviation,
which can be visualized as “error bars” around the mean.

In more than one dimension X can be visualized as
an error ellipsoid around the mean in a similar way.

l=(x-—p)'Z7 (x—p)







