Assignment II.

probability concepts, hypothesis testing, chi square fitting

due: November 5, 2017
 (12 days)

problem 1 PHYS 139/239

(a) show empirically the convergence to the central limit theorem in dice throwing simulations
(b) compare the result with your analytic expectation
(c) If you flip a fair coin one billion times, what is the probability that the number of heads is between 500010000 and 500020000, inclusive? (Give answer to 4 significant figures.)

problem 2 PHYS 139/239

A good statistician has data on how a particular jailer is making their decisions in choosing between prisoners B and C answering the question from prisoner A under repeated circumstances. Based on the data and all observations the statistician knows that the jailer operates in some hardwired way with his preferred x-value and based on that x-value he makes a binary decision choosing between prisoners B and C. However, the statistician has to know the prior probability distribution $p(x l l)$ from all jailers of the universe how they are individually wired for some particular x in making their binary decisions for their x-value. So observing a jailer repeatedly may reveal his x-value to some limited degree but it is folded with the choice x from the probability distribution $\mathrm{P}(\mathrm{xII})$ a particular jailer of the universe is wired for. If we observe another jailer in repeated decision making, he may have a different x value.

Now the statistician knows that the jailer observed chose $B \quad N_{B}=13$ times out of $N=37$ observations of the jailer and C is chosen 24 times. Assuming constant prior distribution $\mathrm{P}(\mathrm{xlI})$ now the statistician can calculate the posterior distribution $\mathrm{P}(\mathrm{xldata})$ of x values based on the observations (N and N_{B} data).
(1) Calculate this normalized distribution analytically.
(2) Plot it with proper normalization.
(3) Discuss what you expect in the $\mathrm{N} \rightarrow>$ inifinity limit at fixed $\mathrm{N}_{\mathrm{B}} / \mathrm{N}$.
problem 3 PHYS 239 bonus for PHYS 139

Repeat Problem 2 when the prior distribution is not constant but $P(x I I) \propto x^{\wedge 10(1-x)^{\wedge} 9 \text {. }}$

problem 4 PHYS 139/239

(a) prove the additivity of the semi-invariant I_{4} analytically and in simulation
(b) PHYS 239 only show the additivity of I_{6} analytically and in simulation to reasonable accuracy for some distribution of your choosing.
Show that $I_{6}=0$ for the normal distribution.

Mean and variance are additive over independent random variables:
definition of the $\mathrm{k}_{\text {th }}$ centered moment M_{k} of a distribution:

$$
M_{k} \equiv\left\langle\left(x_{i}-\bar{x}\right)^{k}\right\rangle
$$

following this definition M_{2} is the variance of the distribution

$$
\overline{(x+y)}=\bar{x}+\bar{y} \quad \begin{gathered}
\operatorname{Var}(x+y)=\operatorname{Var}(x)+\operatorname{Var}(x) \\
\text { note "bar" notation, equivalent to <> }
\end{gathered}
$$

Certain combinations of higher moments are also additive. These are called semi-invariants.

$$
\begin{array}{cc}
I_{2}=M_{2} & I_{3}=M_{3} \quad I_{4}=M_{4}-3 M_{2}^{2} \\
I_{5}=M_{5}-10 M_{2} M_{3} & I_{6}=M_{6}-15 M_{2} M_{4}-10 M_{3}^{2}+30 M_{2}^{3}
\end{array}
$$

Skew and kurtosis are dimensionless combinations of semi-invariants

$$
\operatorname{Skew}(x)=I_{3} / I_{2}^{3 / 2} \quad \operatorname{Kurt}(x)=I_{4} / I_{2}^{2}
$$

A Gaussian has all of its semi-invariants higher than I_{2} equal to zero. A Poisson distribution has all of its semi-invariants equal to its mean.

problem 5 PHYS 139/239

calculate numerically the t-values and p-values in the table

Let's dispose of the silly (all p's $=0.25$):
The test statistic: the value of the observed count under the null hypothesis
that it is binomially (or equivalent normally) distributed with $p=0.25$.

$$
\begin{aligned}
\mu & =0.25 \mathrm{~N} \\
\sigma & =\sqrt{0.25 \times 0.75 \mathrm{~N}} \\
t & =\frac{n-\mu}{\sigma} \\
p & =2\left[1-P_{\text {Normal }}(|t|)\right]
\end{aligned} \quad \text { t-value }=\text { number of standard deviations }
$$

	t-value	p-value
A	174.965	≈ 0
C	-174.715	≈ 0
G	-170.963	≈ 0
T	170.713	≈ 0

The null hypothesis is (totally, infinitely, beyond any possibility of redemption!) ruled out.

problem 6 PHYS 239

explain and calculate numerically the two p-values of the hypothesis

 and compare with the numbers in the lecture
can you come up with a hypothesis which cannot be killed by the data of the DNA sequence?

The not-silly model: A and T occur with identical probabilities, as do C and G.
The test statistic: Difference between A and T (or C and G) counts under the null hypothesis that they have the same p, which we will estimate in the obvious way (which is actually an MLE).

$$
\begin{aligned}
& \hat{p}_{A T}=\frac{1}{2}\left(n_{A}+n_{T}\right) / N \\
& \hat{p}_{C G}=\frac{1}{2}\left(n_{C}+n_{G}\right) / N \\
& n_{A} \sim \operatorname{Normal}\left(N \hat{p}_{A T}, \sqrt{N \hat{p}_{A T}\left(1-\hat{p}_{A T}\right)}\right) \\
& n_{T} \sim \operatorname{Normal}\left(N \hat{p}_{A T}, \sqrt{N \hat{p}_{A T}\left(1-\hat{p}_{A T}\right)}\right) \\
& \quad \Rightarrow n_{A}-n_{T} \sim \operatorname{Normal}\left(0, \sqrt{2 N \hat{p}_{A T}\left(1-\hat{p}_{A T}\right)}\right)
\end{aligned} \begin{aligned}
& \text { the difference of two Normals is } \begin{array}{l}
\text { the variance of the sum (or } \\
\text { itself Normal } \\
\text { diference) is the sum of the }
\end{array}
\end{aligned}
$$

problem 7 PHYS 139/239

We measure in an experiment at 23 values of x_{i} the outcome y_{i} from normal distributions where the results are listed in the data.txt

 file:| x | y | y error |
| :---: | :---: | :---: |
| 0.100000000000000 | 1.955692474636036 | 0.166896282383792 |
| 0.400000000000000 | 1.183586547503424 | 0.158551780782385 |
| 0.700000000000000 | 1.022128862295741 | 0.102145122199102 |
| 1.000000000000000 | 0.746134082944572 | 0.060820536337125 |
| 1.300000000000000 | 0.916188421395087 | 0.139506053368529 |
| 1.600000000000000 | 0.724682156536752 | 0.081793212333357 |
| 1.900000000000000 | 0.739127499035786 | 0.096894347069944 |
| 2.200000000000000 | 0.786742524422711 | 0.034353661707974 |
| 2.500000000000000 | 0.972558512530457 | 0.121213729440151 |
| 2.800000000000000 | 1.039776955766267 | 0.183845107945299 |
| 3.100000000000000 | 1.087705062846587 | 0.152064123528747 |
| 3.400000000000000 | 0.896727858969629 | 0.088835443972525 |
| 3.699999999999999 | 1.139381591276074 | 0.128022842446142 |
| 4.000000000000000 | 1.294829163615035 | 0.155588445889791 |
| 4.299999999999999 | 1.502261299770580 | 0.143493932937373 |
| 4.600000000000000 | 1.043529911555928 | 0.219186627495748 |
| 4.899999999999999 | 0.956827376670183 | 0.142469078945670 |
| 5.199999999999999 | 1.147387265711086 | 0.116683264235504 |
| 5.499999999999999 | 0.909994065501967 | 0.060876724854546 |
| 5.799999999999999 | 0.698671186235582 | 0.076323301379691 |
| 6.100000000000000 | 0.553227945238010 | 0.082132016628130 |
| 6.399999999999999 | 0.576371045690540 | 0.085922021448737 |
| 6.699999999999999 | 0.427880507687987 | 0.044877728959367 |

problem 7 PHYS 139/239

(A) assuming that the experiment is described by the theoretical function $f(x)$ of five parameters, calculate the mean value of $b_{3} b_{5}$ and calculate the error from linear error propagation.

$$
f(x)=b_{1} \exp \left(-b_{2} x\right)+b_{3} \exp \left(-\frac{1}{2} \frac{\left(x-b_{4}\right)^{2}}{b_{5}^{2}}\right)
$$

(B) Calculate the mean value of $b_{3} b_{5}$ and calculate the error from the posterior distribution of $b_{3} b_{5}$

